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Abstract

Deep learning is one of the most exciting new areas in medical imaging. This review article 

provides a summary of the current clinical applications of deep learning for lesion detection, 

progression, and prediction of musculoskeletal disease on radiographs, computed tomography 

(CT), magnetic resonance imaging (MRI), and nuclear medicine. Deep-learning methods have 

shown success for estimating pediatric bone age, detecting fractures, and assessing the severity of 

osteoarthritis on radiographs. In particular, the high diagnostic performance of deep-learning 

approaches for estimating pediatric bone age and detecting fractures suggests that the new 

technology may soon become available for use in clinical practice. Recent studies have also 

documented the feasibility of using deep-learning methods for identifying a wide variety of 

pathologic abnormalities on CT and MRI including internal derangement, metastatic disease, 

infection, fractures, and joint degeneration. However, the detection of musculoskeletal disease on 

CT and especially MRI is challenging, as it often requires analyzing complex abnormalities on 

multiple slices of image datasets with different tissue contrasts. Thus, additional technical 

development is needed to create deep-learning methods for reliable and repeatable interpretation 

of musculoskeletal CT and MRI examinations. Furthermore, the diagnostic performance of all 

deep-learning methods for detecting and characterizing musculoskeletal disease must be evaluated 

in prospective studies using large image datasets acquired at different institutions with different 

imaging parameters and different imaging hardware before they can be implemented in clinical 

practice.

MACHINE LEARNING, and more specifically deep learning, is one of the most widely 

used forms of artificial intelligence, which has revolutionized computer science, especially 

computer vision, and has quickly expanded into a much broader range of science and 

engineering disciplines, including medical imaging.1 Recent surveys on deep learning in 

medical imaging have shown a wide variety of applications in different imaging 

subspecialties including neuro, lung, abdomen, cancer, breast, and cardiac imaging.2,3 

Applications in musculoskeletal imaging are emerging but remain relatively limited 
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compared to other fields. Deep learning has been used for various musculoskeletal imaging 

applications including tissue segmentation,4–7 image reconstruction,8–10 and disease 

detection. The use of deep learning for disease detection would be especially important for 

clinical radiologists, as it could potentially maximize diagnostic performance while reducing 

subjectivity and errors due to distraction and fatigue. This review article will provide a 

general overview of deep learning in medical imaging. The article will also provide a 

summary of the previously published peer-reviewed articles on the current clinical 

applications of deep learning for lesion detection, progression, and prediction of 

musculoskeletal disease on radiographs, computed tomography (CT), magnetic resonance 

imaging (MRI), and nuclear medicine.

Overview of Deep Learning in Medical Imaging

Artificial intelligence can refer to any machine that performs tasks that typically require 

human knowledge in a manner that resembles how humans solve problems. Machine 

learning is a branch of artificial intelligence that aims to automatically extract patterns or 

features out of data and to use such data trends in the form of experience. In this way, 

machine learning can make informed decisions with a measurable performance that 

improves over time. Conventional machine-learning techniques such as regression, 

clustering, shallow classifiers such as support vector machine, and random forest have been 

used in medical imaging for decades. While the classification abilities of these approaches 

can be remarkable, all methods rely on the effort invested in preprocessing and transforming 

data and designing feature extractors for use in pattern learning. However, such feature 

engineering typically requires domain knowledge and does not result in the extraction of the 

true essence of the data being analyzed. Furthermore, the results lack scalability, and the 

acquired knowledge is difficult to transfer to new domains.11–13

A requisite for the recent advancement of artificial intelligence was the design of systems 

smart enough to independently understand the surrounding world and to learn 

representations of the data that could support the extraction of meaningful information 

without a-priori features definition. This meaningful information is analogous to concepts, 

which are generally structured in hierarchies: complicated concepts can be interpreted as the 

fusion of many simple concepts at different levels of abstraction. This is the core idea of 

deep learning, which is based on the use of a specific algorithm architecture called a neural 

network. Neural networks have proven to be useful as they obey the universal approximation 
theorem and allow mapping input features to outputs by ways of matrix multiplication 

operations. In other words, the theorem states that when provided with enough neurons and 

nonlinear activation functions, neural networks can approximate any function that maps 

from any finite dimensional discrete space to another.1

The design of the neural network was initially inspired by the interconnected neurons in the 

brain and how they function to perform complex cognitive tasks. A neural network consists 

of input, hidden, and output layers. The input layer receives the data that is to be processed, 

while the output layer provides the results of the desired task. Multiple hidden layers are 

included in the neural network between the input and output layers and are interconnected 

with each other by weights similar to the real interconnected neurons in the brain. Thus, 
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deep learning usually refers to a deep structure with a large number of hidden layers. Unique 

features of this architecture are its flexibility and scalability, as it can range from a simple 

shallow structure with just a few layers to an ultrasophisticated deep structure with hundreds 

of layers that can perform complex functions well beyond the capabilities of conventional 

machine-learning techniques.1

The convolutional neural network (CNN) is the main neural network architecture used in 

computer vision and subsequently in medical imaging. A CNN consists of a series of 

convolutional layers interspersed with a series of pooling layers. Each convolution layer 

consists of one or more filters or kernals, which analyze features of regional voxels in the 

input image to generate feature maps. Units of the feature maps are connected to one another 

and to the units of feature maps in other convolutional layers by filter weights. An activation 

function, typically a rectified linear unit,14 replaces all negative values in the feature map to 

zero, which allows only pertinent features to pass from one layer to the next. The pooling 

layer is then used to downsample the feature maps and merge sematically similar features by 

either taking the maximum value (max pooling) or average value (average pooling) of 

adjacent units in the feature map. This pooling process reduces the number of parameters 

and computations in the neural network and makes the network less sensitive to distortions 

and translations in the input image.

The CNN connects multiple convolution layers together in a deep network that can detect a 

hierarchy of features that are increasingly more abstract and complex. For example, the 

filters in the first few layers may be used to identify intensity variations, edges, and patterns 

in the input image at a rudimentary level. Next, new sets of filters at intermediate-level 

layers can then process the output from low-level features to construct composite 

information such as local shapes and patterns. This process repeats and continues until a 

high-level layer, where multiple global features are combined to represent a unique set of 

patterns in the image. The multiple convolution layers of the CNN are then connected to a 

fully-connected layer. This output layer of the CNN uses a softmax activation function to 

combine the features extracted from the different convolution layers in order to classify the 

input image into different categories.1

The CNN typically undergoes supervised training, in which a large number of paired images 

and reference classification labels are divided into separate training, validation, and testing 

groups. However, unsupervised or weakly-supervised training can also be applied for 

training the CNN for applications in which collecting the paired data and reference labels is 

challenging, expensive, or not possible. In supervised training, a back-propagation procedure 

is performed on the training group that is used to determine the most optimal filter weights. 

The CNN can be trained using random numbers as the initial weights, or it can be initialized 

through a process called transfer learning, in which the initial weights are obtained from a 

dataset other than the task-specific one. Since the networks could have millions of potential 

weights for some applications, transfer learning is able to reduce the demands for abundant 

training data and improve training efficiency.15,16 The CNN uses the input images in the 

training group to determine the output classifications utilizing the initial model weights, 

which are then compared to the output classifications of the reference labels to quantify the 

error. The CNN then adjusts its internal weights in order to reduce the estimated error. Since 
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the training process is performed iteratively through all images in the training group, the 

CNN estimation on the validation group determines how many total iterations or epochs 

provide an optimal training performance. This estimation on data other than the training 

group ensures that the training can be generalized to other image datasets without the model 

being overly adapted to the training data (ie, overfitting). Finally, once the training is 

complete, the filter weights of the CNN are fixed, and the testing group is used to assess the 

diagnostic performance of the deep-learning model in the real-world scenario.

Clinical Applications of Deep Learning in Musculoskeletal Imaging

Detection of Internal Derangement of the Knee Joint on MRI

Deep-learning methods have been used to detect cartilage lesions within the knee joint on 

MRI. Liu et al17 used an encoder-decoder VGG-16 CNN to segment cartilage on sagittal fat-

suppressed T2-weighted 2D fast spin-echo (FSE) images and extract cartilage image patches 

in ~100 regions of interest placed on the articular surface of the femur and tibia in 175 

subjects. The extracted patches were then analyzed by a VGG-16 classification CNN to 

determine the presence or absence of cartilage lesions using the interpretation of an 

experienced radiologist as the reference standard. Two individual evaluations were 

performed using separate hold-out testing groups consisting of 1310 cartilage patches. The 

machine had an area under the curve (AUC) on receiver operating characteristic (ROC) 

analysis of 0.92 for detecting cartilage lesions with a sensitivity and specificity of 84% and 

85%, respectively, for evaluation 1 and an AUC of 0.91 with a sensitivity and specificity of 

81% and 88%, respectively, for evaluation 2. Furthermore, there was good intraobserver 

agreement between the two evaluations, with a kappa value of 0.76 (Fig. 1).17 Pedoia et al18 

used a U-Net CNN to segment patellar cartilage on sagittal fat-suppressed proton density-

weighted 3D FSE images in 1478 subjects. The segmented cartilage was then analyzed by a 

custom-made classification CNN to determine the presence or absence of cartilage lesions 

using the interpretation of an experienced radiologist as the reference standard. Using a 

hold-out testing group consisting of 222 patellar cartilage surfaces, the machine had an AUC 

of 0.88 for detecting cartilage lesions with sensitivity and specificity of 80%.18

Deep-learning methods have been used to detect meniscal tears on MRI. Roblot et al19 used 

a fast-region CNN to first segment meniscus on sagittal fat-suppressed T2-weighted 2D FSE 

images in 1123 subjects and then determine the presence or absence of meniscal tears using 

the interpretation of experienced radiologists as the reference standard. Using a hold-out 

testing group consisting of meniscus segments in 700 subjects, the machine had an AUC of 

0.94 for detecting meniscal tears.19 Couteaux et al20 used a similar deep-learning approach 

to detect meniscal tears on fat-suppressed T2-weighted 2D FSE images as part of the French 

Radiology Society Challenge. The Challenge included a training group consisting of images 

from 1128 subjects and a hold-out testing group consisting of images from 700 subjects with 

the interpretation of experienced radiologists as the reference standard. A fast-region CNN 

was used to segment meniscus and then determine the presence or absence of meniscal tears. 

The neural network was coupled to a shallow ConvNet CNN to classify the orientation of 

the tear as vertical or horizontal. The machine had an AUC of 0.91 for detecting and 

classifying meniscal tears.20 Pedoia et al18 used a U-Net CNN to segment meniscus on 
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sagittal fat-suppressed proton density-weighted 3D FSE images in 1478 subjects. The 

segmented meniscus was then analyzed by a custom-made classification CNN to determine 

the presence or absence of meniscal tears using the interpretation of an experienced 

radiologist as the reference standard. Using hold-out testing groups consisting of 887 

meniscus segments, the machine had an AUC of 0.89 for detecting meniscal tears with 

sensitivity and specificity of 90% and 82%, respectively (Fig. 2).18

Studies have used deep-learning methods to detect anterior cruciate ligament (ACL) tears on 

MRI. Liu et al21 used coupled CNNs consisting of LeNet-5 and YOLA to isolate the ACL 

on sagittal proton density-weighted and fat-suppressed T2-weighted 2D FSE images in 175 

subjects with ACL tears and 175 subjects without ACL tears. The isolated ACLs were then 

analyzed by a DenseNet classification CNN to determine the presence or absence of ACL 

tears using arthroscopy as the reference standard. Using a hold-out testing group consisting 

of 100 isolated ACLs, the machine had an AUC of 0.98 for detecting ACL tears with 

sensitivity and specificity of 96% and 98%, respectively (Figs. 3 and 4).21 Chang et al22 

used a U-Net CNN to isolate the ACL on coronal proton density-weighted 2D FSE images 

in 130 subjects with ACL tears and 130 subjects without ACL tears. The isolated ACLs were 

then analyzed by a ResNet classification CNN to determine the presence or absence of ACL 

tears using the interpretation of an experienced radiologist as the reference standard. Using a 

hold-out testing group consisting of 60 isolated ACLs, the machine had an AUC of 0.97 for 

detecting ACL tears with sensitivity and specificity of 100% and 93%, respectively.22

The previous studies used coupled deep-learning pipelines to detect internal derangement of 

the knee joint on MRI, with the first CNN isolating the structures of interest and the second 

classification CNN determining the presence or absence of pathology within the isolated 

joint structures (Fig. 5). In all studies, the machine had similar diagnostic performance as 

human readers for evaluating the same hold-out testing groups (Fig. 6).17,18,21,22 In an 

alternative approach, Bien et al23 used a single custom-made “MRNet” classification CNN 

to analyze nonsegmented axial fat-suppressed proton density-weighted 2D FSE, coronal T1- 

weighted 2D FSE, and sagittal fat-suppressed T2-weighted 2D FSE images in 1370 subjects 

with 319 ACL tears and 508 meniscal tears to determine the presence or absence of ACL 

and meniscal tears using the interpretation of experienced radiologists as the reference 

standard (Fig. 7). Using a hold-out testing group consisting of 120 MRI examinations, the 

machine had a sensitivity and specificity of 76% and 97%, respectively, for detecting ACL 

tears and a sensitivity and specificity of 71% and 74%, respectively, for detecting meniscal 

tears. The diagnostic performance of the machine was significantly lower (P < 0.05) than the 

diagnostic performance of human readers evaluating the same hold-out testing group.23 The 

results suggest that isolation of individual joint structures may be a burdensome and time-

consuming first step in the deep-learning pipeline, but may be necessary to maximize 

diagnostic performance for detecting internal derangement of the knee joint on MRI.

Detection of Osseous Metastatic Disease on CT, MRI, and Nuclear Medicine

Deep-learning methods have been used to localize vertebral body metastases on CT and 

MRI of the spine using metastatic lesions outlined by experienced radiologists as the 

reference standard. Roth et al24 used a custom-designed computer-assisted detection (CAD) 
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method combining attenuation thresholding, region growing, and watershed algorithms to 

isolate individual vertebrae segments on axial CT images in 49 subjects with 539 sclerotic 

lesions and five control subjects without metastatic disease. The isolated vertebrae segments 

were then analyzed by a custom-designed “DropConnect” classification CNN to determine 

the presence or absence of metastatic disease. Using 5-fold crossvalidation, the machine had 

an AUC of 0.83 for localizing large metastatic lesions more than 3 cm in diameter, with 9.5 

false positives per subject at a sensitivity of 90%.24 Chmelik et al25 used a custom-designed 

CAD method to segment the entire spine on sagittal CT images of 31 subjects with 1046 

lytic lesions and 1135 sclerotic lesions. Orthogonal plane voxel-based masks were created 

from the isolated spine, which were then analyzed by a custom-designed, voxel-based 

classification CNN to determine the presence or absence of metastatic disease within each 

tissue voxel. Using a hold-out testing group consisting of 24,000 segmented tissue voxels, 

the machine had an AUC of 0.80 for detecting lytic meta-static lesions and an AUC of 0.72 

for detecting sclerotic metastatic lesions with the voxels. For object-wise evaluation, the 

machine had 45.6 false positives per subject at 92% sensitivity for localizing small 

metastatic lesions less than 1.5 mm in diameter and 5.9 false positives per subject at 99% 

sensitivity for localizing large metastatic lesions more than 3 cm in diameter.25 Wang et al26 

used a custom-designed classification CNN to analyze nonsegmented sagittal fat-suppressed 

T2-weighted 2D FSE images of the spine in 26 subjects with metastatic disease. The images 

were preprocessed through multiresolution transformation prior to analysis to create image 

datasets with different resolutions tailored to detect metastatic disease in different regions of 

the spine. Using 4-fold crossvalidation, the machine had 0.4 false positives per subject at 

90% sensitivity for localizing metastatic lesions (Fig. 8). However, the number and sizes of 

the metastatic lesions, which would influence diagnostic performance, was not specified in 

the study.26

Deep-learning methods have also been used to localize whole-body osseous metastatic 

disease on combined positive emission tomography and computer tomography (PET-CT). 

Xu et al27 used two enhanced V-Net CNNs that were cascaded to build a W-shaped 

framework to learn the volumetric feature representation of the skeleton and to differentiate 

between normal bone and bone metastases using both the PET and CT images. The training 

data consisted of 2000 image patches with and 2000 image patches without meta-static 

lesions outlined by an experienced radiologist as the reference standard from PET-CT 

images of 12 subjects with multiple myeloma. Using 3-fold crossvalidation, the machine had 

73% sensitivity and 99% specificity for detecting meta-static lesions throughout the axial 

and appendicular skeleton. Furthermore, the diagnostic performance of the deep-learning 

approach was superior to multiple traditional machine learning methods including random 

forest classifier, k-nearest neighbor, and support vector machine.27

Detection of Spine Degenerative Disk Disease and Infection on MRI

Deep-learning methods have been used to detect degenerative disc disease and infection of 

the spine on MRI. Jamaludin et al28,29 used a custom-designed CAD method to isolate 

vertebral body and disc segments on sagittal T2-weighted 2D FSE images of the lumbar 

spine in 2009 subjects. The isolated vertebral body and disc segments were then analyzed by 

a VGG-M classification CNN to determine the presence or absence of various findings of 
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degenerative disc disease, including Pfirrmann grade, disc narrowing grade, central canal 

stenosis, vertebral body endplate defects and marrow changes, and spondylolisthesis using 

the interpretation of experienced radiologists as the reference standard (Fig. 9). Using a 

hold-out testing group consisting of 1200 isolated vertebral body and disc segments, the 

interrater agreement between the machine and the human reader ranged between 70% for 

assigning a Pfirrmann grade and 93% for determining the presence or absence of vertebral 

body marrow changes. Furthermore, the interreader agreement between the machine and the 

human reader was similar to the intrareader agreement between the same human reader 

evaluating the same vertebral body and disc segments at different timepoints (Table 1).28,29 

Kim et al30 used a custom-designed classification CNN to analyze nonsegmented axial T2-

weighted 2D FSE images in 80 subjects with tuberculous spondylitis and 80 subjects with 

pyogenic spondylitis using biopsy as the reference standard. For network training, 

experienced radiologists placed regions of interest around the pathologic abnormalities on 

the images. Using 4-fold crossvalidation, the machine had an AUC of 0.80 for distinguishing 

between tuberculous and pyogenic spondylitis with a sensitivity and specificity of 85% and 

68%, respectively. The machine had similar diagnostic performance as human readers 

evaluating the same hold-out testing groups.30

Estimation of Pediatric Bone Age on Radiographs

Multiple deep-learning methods have been described for estimating pediatric bone age using 

anterior–posterior hand radio-graphs, with some algorithms already approved by the United 

States Food and Drug Administration (US FDA) for use in clinical practice. Larson et al31 

published one of the earliest and largest studies, which used 14,036 hand radiographs to train 

a custom-designed classification CNN to estimate pediatric bone age with the interpretation 

of experienced radiologists as the reference standard. Using a hold-out testing group 

consisting of 200 hand radiographs, the root mean square and mean absolute difference 

between the bone age estimates provided by the machine and the bone age estimates 

provided by the human readers were 0.63 years and 0.50 years, respectively.31 A recent 

study performed by Halabi et al32 described the results of the Radiological Society of North 

America Machine Learning Challenge for estimating pediatric bone age using a training 

group consisting of 14,036 hand radiographs and a hold-out testing group consisting of 200 

hand radio-graphs, with the interpretation of experienced radiologists as the reference 

standard. The Challenge had 109 participants with a 4.2-month mean absolute difference 

between the bone age estimates provided by the top-ranked machine and the bone age 

estimates provided by the human readers. The top-ranked machine used an Inceprion V3 

classification CNN to analyze pixel information on the hand radiographs, which was then 

concatenated with gender information in a joint training model.32

Detection of Fractures on Radiographs and CT

Multiple deep-learning methods have been used to detect fractures on radiographs. Most 

studies have used open-source CNNs and large training datasets for detecting fractures in 

multiple body parts including the hip,33–36 shoulder,36,37 wrist,36,38–40 and ankle36,41 using 

the interpretation of experienced radiologists as the reference standard. Diagnostic 

performance varied but was generally high for all studies, with AUCs ranging between 0.90 

and 0.99, sensitivities ranging between 73% and 99%, specificities ranging between 73% 
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and 97%, and accuracies ranging between 75% and 96% (Table 2). One study deserves 

particular mention. Lindsey et al36 used a modified U-Net classification CNN to detect 

fractures in 11 body parts utilizing a training group consisting of 135,845 radiographs. Using 

a hold-out testing group consisting of 300 randomly chosen radiographs, the machine had an 

AUC of 0.99 for detecting fractures with a sensitivity and specificity of 94% and 95%, 

respectively (Fig. 10). The same hold-out testing group was used to evaluate the diagnostic 

performance of emergency medicine physicians for detecting fractures with and without use 

of the machine. The clinicians experienced an average 47% reduction in the 

misinterpretation rate when using the machine to aid in interpretation of the radiographs.36

Multiple deep-learning methods have been used to detect spine fractures on CT using the 

interpretation of experienced radiologists as the reference standard. Raghavendra et al42 used 

a custom-designed classification CNN to analyze nonsegmented sagittal CT scans of the 

entire spine in 100 subjects with fracture and 60 subjects without fracture of the 

thoracolumbar vertebral bodies. Using a hold-out testing group consisting of 210 CT images 

with fracture and 126 CT images without fracture, the machine had a sensitivity and 

specificity of 100% and 98%, respectively, for detecting vertebral body fractures.42 Tomita 

et al43 used coupled neural networks to analyze nonsegmented sagittal CT scans of the entire 

spine in 713 subjects with fracture and 719 subjects without fracture of the thoracolumbar 

vertebral bodies. A ResNet classification CNN was first used for feature extraction followed 

by a recurrent neural network module to aggregate the extracted features and make the final 

diagnosis. Using a hold-out testing group consisting of 129 CT scans, the machine had an 

AUC of 0.91 for detecting vertebral body fractures with a sensitivity and specificity of 85% 

and 96%, respectively.43 However, both studies only classified the presence or absence of a 

fracture for the entire spine, which raises questions regarding the ability of the deep-learning 

methods to localize the exact site of injury. Roth et al44 used a custom-designed CAD 

method combining multiatlas label fusion and edge mapping algorithms to isolate individual 

vertebrae segments on axial CT scans in 18 subjects with 55 displaced posterior element 

fractures and five control subjects without fracture. The isolated vertebrae segments were 

then analyzed by a custom-designed classification CNN to determine the presence or 

absence of fracture. Using a hold-out testing group consisting of isolated vertebrae segments 

from six patients with fractures, the machine had an AUC of 0.86 for detecting posterior 

element fracture with a sensitivity of 71% or 81% at 5 or 10 false positives per patient, 

respectively.44

A deep-learning method has also been described for detecting and characterizing calcaneal 

fractures on CT. Pranata et al45 used a combined CNN and CAD approach to analyze 683 

nonsegmented CT images with fracture and 1248 nonsegmented CT images without fracture 

from an unspecified number of subjects with calcaneus fractures. A ResNet classification 

CNN was first used to classify the axial, coronal, and sagittal images in the CT scans into 

fracture and nonfactors categories using the interpretation of an experienced radiologist as 

the reference standard. A CAD method consisting of speedup robust features, canny edge 

detection, and contour tracing algorithms were then used to detect the exact location of the 

fractures on the CT images. Using a hold-out testing group consisting of 136 CT images 

with fracture and 250 CT images without fracture, the machine had 98% accuracy for 

localizing the calcaneal fractures.45
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Detection and Characterization of Osteoarthritis on Radiographs and MRI

The Kellgren–Lawrence (KL) system is widely used to assess the severity of osteoarthritis 

(OA) on knee and hip radio-graphs in clinical practice and research studies.46 Two recent 

studies have used deep-learning methods to automatically assign a KL grade on anterior–

posterior knee radiographs using large image datasets from the Osteoarthritis Initiative 

(OAI) and Multi-Center Osteoarthritis Study (MOST) and the interpretation of experienced 

radiologists as the reference standard. Tiulpin et al47 made use of knee joint symmetry by 

adopting a Siamese classification CNN for assessing the severity of knee OA. The features 

learned from the medial and lateral sides of the knee were shared between two paths in the 

network and were eventually concatenated using a final fully connected layer to assign a KL 

grade. The model was trained using images from MOST and evaluated on a hold-out testing 

group consisting of 5960 knees radiographs from the OAI. The machine had an average 

multiclass accuracy of 67% and quadratic kappa coefficient of 0.83 for assigning a KL 

grade.47 Conversely, Norman et al48 used a modified DenseNet CNN to assign a KL grade 

on knee radiographs. The DenseNet architecture was modified to allow inclusion of 

demographic and clinical factors into the prediction model including age, gender, body mass 

index (BMI), and pain and disability scores. The variables were fed into the model as a four-

dimensional vector, which was transformed into a 32-dimensional vector by a fully 

connected layer and then concatenated onto the flattened image output by DenseNet. Using 

a hold-out testing group consisting of 621 knee radio-graphs from the OAI, the machine had 

a quadratic kappa coefficient of 0.83 for assigning a KL grade. The sensitivity for detecting 

no OA (KL grades 0 and 1), mild OA (KL grade 2), moderate OA (KL grade 3), and severe 

OA (KL grade 4) was 84%, 70%, 69%, and 86%, respectively with corresponding specificity 

of 86%, 84%, 97%, and 99%, respectively (Fig. 11).48 The kappa coefficient of 0.83 was 

identical to the kappa coefficient reported by Tiulpin et al47 and similar to the kappa 

coefficients reported for inter-observer and intraobserver agreement for assigning a KL 

grade to knee radiographs by human readers.49 In a smaller study, Xue et al50 used a 

VGG-16 classification CNN to assign a KL grade to assess the severity of hip OA on 

anterior-posterior pelvic radiographs using the interpretation of an experienced radiologist as 

the reference standard. Using a hold-out testing group consisting of 83 pelvic radiographs, 

the machine had an AUC of 0.94 for determining the presence (KL grades 0 and 1) or 

absence (KL grades 2, 3, and 4) of radiographic OA with a sensitivity and specificity of 95% 

and 91%, respectively.50

A recent study by Pedoia et al51 used a deep-learning method combined with voxel-based 

relaxometry for the analysis of T2 relaxation time maps to determine the presence or absence 

of radiographic knee OA using the interpretation of experienced radiologists as the reference 

standard. A shallow random forest classifier model trained on handcrafted features 

consisting of average cartilage T2 values on different articular surfaces of the knee joint was 

compared to a DenseNet classification CNN model trained on the raw T2 data. Using a hold-

out testing dataset consisting of 658 MRI examinations, the random forest classifier model 

trained with features extracted with simple linear pattern decomposition had an AUC of 0.77 

for detecting radiographic OA, while the DenseNet model had a significantly higher (P < 
0.05) AUC of 0.83. The study highlighted the ability of a deep-learning approach to exploit 
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uncovered information in T2 relaxation time maps drastically underused by machine-

learning analysis due to oversimplified feature extraction.51

Miscellaneous Applications on Radiographs

Chee et al52 used a modified ResNet classification CNN to analyze anterior–posterior hip 

radiographs in 1892 subjects with femoral head osteonecrosis and 855 subjects without 

femoral head osteonecrosis using the interpretations of MRI examinations by experienced 

radiologists as the reference standard. Using a hold-out testing group consisting of 250 hip 

radiographs, the machine had a sensitivity and specificity of 85% and 91%, respectively, for 

detecting femoral head osteonecrosis, which was similar to the diagnostic performance of 

human readers.52 England et al53 used a DenseNet classification CNN to analyze lateral 

elbow radiographs in 882 children with a history of trauma to detect an elbow joint effusion 

using the interpretation of experienced radiologists as the reference standard. Using a hold-

out testing group consisting of 96 elbow radiographs with effusion and 33 elbow radio-

graphs without effusion, the machine had an AUC of 0.94 for detecting an elbow joint 

effusion with a sensitivity and specificity of 91%.53

Conclusion and Future Directions

There are many emerging applications of deep learning in musculoskeletal imaging. The 

most promising applications are in the use of deep-learning approaches for the interpretation 

of radiographs. Multiple deep-learning algorithms have already been approved by the US 

FDA for estimating pediatric bone age on hand radiographs. Deep-learning methods have 

also shown tremendous success for detecting fractures, assessing the severity of knee and 

hip OA, identifying femoral head osteonecrosis, and detecting elbow joint effusion on 

radiographs. However, no deep-learning methods have been described for detecting 

neoplastic, inflammatory, infectious, or metabolic processes in bone or for identifying soft-

tissue abnormalities. Furthermore, all recently described deep-learning methods have been 

designed to perform a single task. To be useful in clinical practice, multiple deep-learning 

algorithms will need to be combined in a single pipeline to evaluate every possible 

abnormality in bone and soft tissue on radiographs, similar to the interpretation of the 

imaging studies by clinical radiologists.

Deep-learning methods have also shown promising results for detecting fractures on CT and 

osseous metastatic disease on CT and nuclear medicine. Deep-learning approaches for 

detecting pathology using these imaging modalities is more challenging than using 

radiographs, as it typically requires evaluating a large number of image slices. For this 

reason, the preliminary results have been less encouraging, with a higher number of false 

positive and false negative interpretations. Furthermore, there has been little work performed 

to determine the ability of deep-learning approaches to characterize abnormalities detected 

on CT or nuclear medicine. For example, a deep-learning method may be able to identify an 

osseous lesion within the spine on CT, but can it perform the next step in the evaluation 

process and determine whether the lesion represents metastatic disease rather than a benign 

hemangioma or bone island? This classification process requires a great deal of experience 

that may be beyond the capabilities of even the deepest neural network.
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The use of deep-learning approaches for detecting musculoskeletal disease on MRI is 

especially challenging, as it often requires analyzing complex abnormalities on multiple 

slices of image datasets acquired in different planes with different tissue contrasts. 

Furthermore, the variability in image quality on MRI is much greater than on radiographs, 

CT, and nuclear medicine due to the use of a wide variety of scanners, pulse sequences, and 

imaging parameters in clinical practice. Nevertheless, there has been promising preliminary 

results on the use of deep-learning methods for detecting internal derangement and OA of 

the knee and degenerative disk disease, infection, and metastatic disease of the spine on 

MRI. However, current deep-learning approaches have limitations that need to be addressed. 

For example, most of the deep-learning methods used to detect internal derangement of the 

knee require isolating the structures of interest before determining the presence or absence 

of pathology, which is a burdensome and time-consuming first step that may be difficult to 

perform due to the variable image quality and tissue contrast on MRI. Furthermore, no deep-

learning methods have been described for detecting internal derangement in more difficult to 

image joints such as the wrist, hip, ankle, or elbow. In addition, deep-learning approaches 

have shown promising preliminary results for determining the presence or absence of central 

canal stenosis of the spine on MRI. However, can even the best neural network trained using 

large image datasets be able to determine with high accuracy and repeatability the exact 

degree of central canal, lateral recess, and neural foraminal stenosis at each level of the 

spine? These are questions that need to be addressed in future studies.

In conclusion, there have been many recent advances in the use of deep-learning methods in 

musculoskeletal imaging. The excellent preliminary results of deep-learning approaches for 

the interpretation of radiographs suggests that these methods may soon be available for use 

in clinical practice. However, much additional work is needed to develop more accurate and 

efficient deep-learning techniques to detect and characterize musculoskeletal disease on CT, 

MRI, and nuclear medicine. This may be aided by future technological advances, including 

the development of deeper neural networks and more sophisticated graphic processing units 

that would allow the use of extremely large image datasets for machine training. Regardless 

of the imaging modality used, the diagnostic performance and repeatability of deep-learning 

methods for detecting and characterizing musculoskeletal disease must be evaluated in 

prospective studies using large testing datasets acquired at different institutions with 

different imaging parameters and different imaging hardware before they can be 

implemented in clinical practice. Furthermore, improvements in diagnostic performance and 

efficiency of clinical radiologists when using the deep-learning technology needs to be 

assessed. The great deal of additional work needed for the translation of current deep-

learning methods into clinical practice clearly indicates that the job security of clinical 

radiologists is not in jeopardy, at least for the time being.
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FIGURE 1: 
Examples of true-positive, true-negative, false-positive, and false-negative interpretations of 

a deep-learning method for detecting cartilage lesions within the knee joint on MRI (arrows) 

using sagittal fat-suppressed T2-weighted 2D FSE images and the interpretation of an 

experienced radiologist as the reference standard. Figure obtained from a study performed 

by Liu et al.17
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FIGURE 2: 
Examples of false-positive and false-negative interpretations of a deep-learning method for 

detecting meniscal tears within the knee joint on MRI (arrows) using sagittal fat-suppressed 

proton density-weighted 3D FSE images and the interpretation of an experienced radiologist 

as the reference standard. Figure obtained from a study performed by Pedoia et al.18
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FIGURE 3: 
Examples of false-positive and false-negative interpretations of a deep-learning method for 

detecting meniscal tears within the knee joint on MRI (arrows) using sagittal (a) proton 

density-weighted and (b) fat-suppressed T2-weighted 2D FSE images and arthroscopy as the 

reference standard. Figure obtained from a study performed by Liu et al.21
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FIGURE 4: 
Example of a true-positive interpretation of a deep-learning method for detecting an ACL 

tear within the knee joint on MRI (arrows) using sagittal (a) proton density-weighted and (b) 
fat-suppressed T2-weighted 2D FSE images and arthroscopy as the reference standard. It 

should be noted that all clinical radiologists reviewing the same images had false-negative 

interpretations in this patient who had prior ACL reconstruction surgery. Figure obtained 

from a study performed by Liu et al.21
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FIGURE 5: 
Example of a coupled deep-learning approach for detecting cartilage lesions within the knee 

joint on MRI. The first CNN segmented the articular cartilage on the images, and the second 

classification CNN determined the presence or absence of cartilage lesions within a series of 

image patches extracted from the segmented cartilage. Figure obtained from a study 

performed by Liu et al.17
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FIGURE 6: 
ROC curve describing the diagnostic performance of a deep-learning method for detecting 

ACL tears within the knee joint on MRI using arthroscopy as the reference standard. The 

AUC of the machine was 0.98, indicating high overall diagnostic accuracy. The sensitivity 

and specificity for a musculoskeletal radiologist, a musculoskeletal radiology fellow, three 

radiology residents, and the machine at the optimal threshold of the Youden index are 

plotted. Note that the sensitivity and specificity of the human readers lie in close proximity 

to the ROC curve of the machine. Figure from a study performed by Liu et al.21
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FIGURE 7: 
Example of an alternative deep-learning approach for detecting ACL and meniscal tears 

within the knee joint on MRI. (a) The classification CNN used a series of nonsegmented 

images as the input and provided a probability score for the presence or absence of joint 

pathology for each sequence in the MRI examination. A logistic regression model was then 

used to combine the weighted probability scores from each individual sequence to obtain a 

final probability score for the presence or absence of ACL and meniscus tears. Figure 

obtained from a study performed by Bien et al.23
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FIGURE 8: 
Example of true-positive and false-positive interpretations of a deep-learning method for 

detecting vertebral body metastases on MRI using sagittal fat-suppressed T2-weighted 2D 

FSE images. The boundaries of the metastatic lesions provided by the reference standard 

radiologist are marked by red contours, while the boundaries provided by the machine are 

marked by blue contours. Note the false-positive contour provided by the machine in the 

cerebellum (arrow). Figure reprinted with permission from a study performed by Wang et al.
26
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FIGURE 9: 
Example of a coupled deep-learning approach for detecting degenerative disc disease within 

the spine on MRI. A custom-designed CAD method was used to (a) detect vertebrae regions 

(red boxes) and (b) extract vertebral body and disc segments (blue boxes) on sagittal T2-

weighted 2D FSE images. (c) The isolated vertebral body and disc segments were then 

analyzed by a classification CNN to determine the presence or absence of various findings 

of degenerative disc disease. Figure reprinted with permission from a study performed by 

Jamaludin et al.29
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FIGURE 10: 
Example of a true-positive interpretation of a deep-learning method for detecting fractures 

using anterior–posterior wrist radiographs and the interpretation of an experienced 

radiologist as the reference standard. The saliency map highlights the areas of acute (short 

arrow) and chronic (long arrows) fractures. While this is a true-positive interpretation, the 

machine could not distinguish between acute and chronic fractures and could not discern 

that the presence of both fracture types should raise suspicion for abuse, which was 

confirmed clinically. Figure provided by Hollis Potter, MD, from a study performed by 

Lindsey et al.36
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FIGURE 11: (a)
Example of a concordant interpretation of a deep-learning method for assigning a KL grade 

using anterior–posterior knee radiographs. Both the machine and reference standard 

radiologist assigned a KL grade of 2. (b) Corresponding saliency map shows the high 

probability regions on which the machine based its interpretation, which were primarily 

located over the medial joint space (arrow). (c) Example of a disconcordant interpretation of 

a deep-learning method for assigning a KL grade using anterior-posterior knee radiographs. 

The machine and reference standard radiologist assigned KL grades of 2 and 3, respectively. 

(d) Corresponding saliency map shows the high probability regions on which the machine 

based its interpretation, which were primarily located over a screw in the medial tibia 

(arrow). Figure from a study performed by Norman et al.48
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TABLE 1.

Interreader Agreement Between a Deep Learning Method and an Experienced Radiologist and Intrareader 

Agreement Between the Same Radiologist for Detecting Various Findings of Degenerative Disc Disease of the 

Lumber Spine on MRI

MRI finding Interreader agreement Intrareader agreement

Pfirrman disc grade 70% 70%

Disc narrowing grade 75% 72%

Central canal stenosis 95% 80%

Upper endplate defects 87% 81%

Lower endplate defects 88% 83%

Lower endplate marrow changes 90% 93%

Lower endplate marrow changes 89% 91%

Spondylolisthesis 95% 90%
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