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Background: Ultrasound (US) is a valuable technique to detect degenerative

findings and intrasubstance tears in lateral elbow tendinopathy (LET). Machine

learning methods allow supporting this radiological diagnosis.

Aim: To assess multilabel classification models using machine learning models

to detect degenerative findings and intrasubstance tears in US images

with LET diagnosis.

Materials and methods: A retrospective study was performed. US

images and medical records from patients with LET diagnosis from

January 1st, 2017, to December 30th, 2018, were selected. Datasets

were built for training and testing models. For image analysis, features

extraction, texture characteristics, intensity distribution, pixel-pixel co-

occurrence patterns, and scales granularity were implemented. Six different

supervised learning models were implemented for binary and multilabel

classification. All models were trained to classify four tendon findings

(hypoechogenicity, neovascularity, enthesopathy, and intrasubstance tear).

Accuracy indicators and their confidence intervals (CI) were obtained for all

models following a K-fold-repeated-cross-validation method. To measure

multilabel prediction, multilabel accuracy, sensitivity, specificity, and receiver

operating characteristic (ROC) with 95% CI were used.

Results: A total of 30,007 US images (4,324 exams, 2,917 patients) were

included in the analysis. The RF model presented the highest mean values

in the area under the curve (AUC), sensitivity, and also specificity by each

degenerative finding in the binary classification. The AUC and sensitivity

showed the best performance in intrasubstance tear with 0.991 [95% CI, 099,

0.99], and 0.775 [95% CI, 0.77, 0.77], respectively. Instead, specificity showed
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upper values in hypoechogenicity with 0.821 [95% CI, 0.82, −0.82]. In the

multilabel classifier, RF also presented the highest performance. The accuracy

was 0.772 [95% CI, 0.771, 0.773], a great macro of 0.948 [95% CI, 0.94,

0.94], and a micro of 0.962 [95% CI, 0.96, 0.96] AUC scores were detected.

Diagnostic accuracy, sensitivity, and specificity with 95% CI were calculated.

Conclusion: Machine learning algorithms based on US images with LET

presented high diagnosis accuracy. Mainly the random forest model shows

the best performance in binary and multilabel classifiers, particularly for

intrasubstance tears.

KEYWORDS

AUC curve, diagnosis, random forest, tennis elbow, ultrasound

Introduction

Lateral elbow tendinopathy (LET) (1), also known as tennis
elbow (2), is one of the most frequent musculoskeletal disorders
(3). The common extensor tendon, specifically the extensor
carpi radialis brevis, is directly involved in the development of
this condition (4). LET is a potentially debilitating condition
causing significant pain and disability for periods of 12 months
or more (5), and in some cases, also generates disruptive sleep
(6). This condition is estimated to affect 3.3–3.5 per 1,000 by year
(7), affecting individuals during their most productive period (8)
and increasing in tennis players with a prevalence of over 40–
50% (9). Effective treatment for this tendinopathy is uncertain,
with controversial scientific evidence that provides more than
40 modalities (10) in 200 clinical trials and several systematic
reviews (11).

Although LET remains primarily a clinical diagnosis (12),
the ultrasound (US) findings in common extensor tendon
have been well documented in asymptomatic persons (13–17)
and LET individuals with tendon structural changes (18–22).
However, the degree of these tendon structural changes is highly
diverse, with different levels of accuracy (19, 23), making the
interpretation of the US imaging a real radiological challenge.
For example, a met analysis reported that the US sensitivity
and specificity in the detection of common extensor tendon
ranged between 64 and 100% and 36 and 100%, respectively
(24). Furthermore, this high variability can increase even more if
different types of degenerative findings are considered, such as
hypoechogenicity, bone changes, neovascularity, calcifications,
cortical irregularities (25), and tear (thickness) (26), increasing
the lack of precision in the diagnosis by US images. To
date, there is still no consensus about what parameters should
be considered for the evaluation of changes in the tendon
matrix (27).

Recently, artificial intelligence has shown the potential to
revolutionize the accuracy of diagnosis by developing a series
of classification models (28) and by reducing medical diagnosis

variability (29–31). The algorithms based on machine learning
and convolutional neural network have been successfully used in
pattern recognition in different clinical contexts and specialties,
such as neurology (32–34), pulmonary (35–37), cardiovascular
(38–42), and oncology (43–51), improving diagnosis accuracy,
weighted errors, false-positive rate, sensitivity, specificity, and
the area under the receiver operating characteristic curve (AUC)
(52). In radiology, machine learning and convolutional neural
network algorithms have been used to detect and classify injury
patterns in fractures, cartilage defects, meniscal and anterior
cruciate ligament tears, and spinal metastases (53, 54) with
excellent performance indices.

Most of the studies mentioned above have used computed
tomography scan, magnetic resonance imaging, and X-rays as
an image-generating source. For example, fracture detection
using a computed tomography scan has been used by Tomita
et al. (55) with deep neural networks for automatic detection of
osteoporotic vertebral fractures, obtaining an accuracy of 89.2%.
Another author (56) that also studied automated detection of
posterior-element fractures with deep convolutional networks
obtained an AUC of 85.7%. There is also some experience using
automatic classification and detection of calcaneus fracture
with an accuracy of 98% (57). Couteaux et al. (58), Bien
et al. (59), and Roblot et al. (60) developed algorithms to
automatically detect knee meniscal tears using convolutional
neural networks and deep learning assisted with magnetic
resonance imaging, obtaining AUC scores of 90.6, 84.7, and
92%, respectively. A similar performance was obtained by
authors in (61), where cartilage lesion detection algorithms were
developed, reaching accuracy levels of 91%. In radiography,
different applications are considered, such as deep learning
classification algorithms for the detection of ossification areas of
the hand to estimate skeletal maturity (62), obtaining accuracy
results similar to an expert radiologist (63). Another publication
evaluated knee osteoarthritis in 3,000 subjects (5,960 knees)
from the Osteoarthritis Initiative dataset using deep learning
techniques. They achieved an AUC of 93%, although the
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FIGURE 1

Flowchart of data selection and subjects used in the study. Abbreviations: MRI, magnetic resonance imaging; CT, computed tomography scan;
LET, lateral elbow tendinopathy; US, ultrasound.

diagnosis is highly dependent on the practitioner’s subjectivity,
just like US methods (64). As noted earlier, however, US imaging
has not been frequently used as an image-generating source.

Machine learning for the medical US continues to
be an opportunity (65), especially in musculoskeletal
disorders since the US is highly operator-dependent (66)
and the applications are dictated by adequate front-end
beamforming, compression, signal extraction, and velocity
(67), requiring significant training to acquire a level of
competence in clinical diagnosis (68) because the images
contain multiplicative noise (69). Baka et al. (70) proposed
a model to learn the appearance of the bone interface
using US images and random forest methods, obtaining a
precision of 86%. Another group proposed an algorithm
to segment vertebral US images into three regions with
a classification rate of 84.7% (71). In tendon, literature is
uncommon yet. In 2017, the University of Salford from the
United Kingdom reported in an international conference
an automatic method to detect and classify Achilles tendon
injuries using decision trees, non-linear support vector
machines, and ensemble classifiers (69). Kapinski in 2018
(72) reported a novel method for continuous evaluation
of reconstructed Achilles tendon healing based on the
responses of intermediate convolutional neural network
layers. Note that the task of detecting and classifying different
conditions as described above can be considered simple
since they are based on binary results (an anomaly can
only be present or not) (54). This study differs from others
that use deep learning or convolutional neural networks
because it uses a multilabel, fast, and simplified classifier to

find different degenerative patterns simultaneously, such as
hypoechogenicity, neovascularity, bony irregularities, and
fibrillar disruptions. Currently, no scientific publications
have identified ultrasonographic findings using artificial
intelligence algorithms.

This article aims to assess multilabel classification
models using machine learning algorithms to detect
degenerative findings and intrasubstance tear in US images
with LET diagnosis.

Materials and methods

Study design

This study was designed as a retrospective and multicentric
study. It was written following the Strengthening the Reporting
of Observation studies in Epidemiology (STROBE) guideline
(73). All patients records with an elbow US exam at MEDS Clinic
in Santiago, Región Metropolitana, Chile. This study started on
March 1st, 2019.

Subjects

Only images of the common extensor tendon were
considered. We selected US images and medical records
from patients with a LET diagnosis from January 1st, 2017,
to December 30th, 2018. The inclusion criteria were: (1)
clinical diagnosis of LET established by orthopedists, sports
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FIGURE 2

Patient evaluation position and an ultrasound (US) finding,
respectively. (A) Probe positioning in the elbow in the US
exploration of the extensor tendon complex. (B) US imaging
shows intrasubstance tear in extensor tendon complex.

medicine physicians, or any musculoskeletal specialists, (2)
US exam made in the medical center of interest, (3) US
exam reported by any musculoskeletal radiologist with more
than 10 years of experience, and (4) no race or age
restriction. Consecutively, exclusion criteria were: (1) US-
guided procedures, such as corticoid, stem cell, and platelet-
rich plasma injections, (2) previous LET surgery, and (3)
duplicate or not distinguishable images, were removed from
the dataset. Figure 1 provides the flowchart to select the
subjects.

Ultrasound assessment of common
extensor tendon

All common extensor tendons were assessed using an
Aplio 500 US system (Toshiba America Medical Systems,
Inc, Tustin, CA, USA) equipped with a multifrequency linear
transducer was used. A frequency of 18 MHz was chosen. The
images were stored as Digital Imaging and Communications in
Medicine (DICOM) files and reviewed on a picture archiving
and communication system (PACS).

All patients with LET diagnosis were examined in a seated
position with flexion elbow in 90 grades with the wrist pronated,
and the arm was resting on a table (14).

Greyscale and color Doppler US imaging are standard
methods used for assessing tendon structural changes (74).
Following the literature recommendations, four common
prevalent degenerative findings were selected from US exams,
such as hypoechogenicity, neovascularity, enthesopathy, and
intrasubstance tear (75). A focal hypoechoic region was
defined as being rounded and not associated with tendon
disruption. Neovascularity was assessed as the presence of blood
flow on color Doppler. Enthesopathy was evaluated as bony
abnormalities at the tendon insertion. A linear intrasubstance
tear was defined as a linear hypoechoic focus associated with
discontinuity of tendon fibers (76–80). Every finding was
evaluated with a binary score as present or absent. We recorded
when an exam presents more than one degenerative finding.
Figure 2A shows the evaluation position, and Figure 2B
represents US finding, in this case, an intrasubstance tear.

Datasets: Ultrasound image and
database

Several recommendations were followed for data (images)
pre-processing, object detection, and feature extraction (81–
83). Two datasets (A and B) were built for training and
testing models. The pre-processing step considers eliminating
any elements that generated noise in the images, such as
uneven lighting, different sizes, or image portions without
information (84). Object detection is a specific injury area of
interest for the analysis. However, in this case, we considered
the common extensor tendon image. Feature extraction is an
important step in the construction of any pattern classification
and aims at the extraction of the relevant information that
characterizes each class (85). According to the 7th International
Conference on System Engineering and Technology 2017,
texture analysis and classification in US medical images can use
feature extraction and texture characteristics for determining
echo pattern characteristics (86). One of the most used are
intensities distribution (mean intensity and standard deviation),
pixel-pixel co-occurrence patterns, and scales granularity.
Then the shape contour was extracted where the texture
of the pixels was quantified. The US images were labeled
manually with four degenerative findings classification outputs
findings (hypoechogenicity, neovascularity, enthesopathy, and
intrasubstance tear) (65) and complementary patient data such
as sex, age, and side of the injury (right or left). The final process
consists of a combination between the patient’s information and
image analysis. Dataset A was image prediction and contained
data extraction from 95 morphology characteristics, shapes,
and texture variables, where one image corresponding to one
diagnostic (30.007 rows). Dataset B was the patient prediction
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FIGURE 3

Study workflow. Abbreviations: BR, binary relevance model; CC, classifier chains model; DBR, dependent binary relevance model; NST, nested
stacking model; RF, random forest; STA, staking generalization; AUC, area under the curve.

TABLE 1 Ultrasound findings comparison between sexes.

Demographic characteristics/
degenerative findings

Female (N = 1717)
Mean ± SD; n (%)

Male (N = 2607)
Mean ± SD; n (%)

p-value Total (N = 4324)
Mean ± SD; n (%)

Age 47.18 ± 11.00 45.99 ± 11.03 <0.001a 46.46 ± 11.03

Right side of the injury 1179 (68.88) 1790 (68.66) 0.98 2969 (68.66)

HE 1201 (69.94) 1730 (66.35) 0.0119b 2931 (67.75)

NV 636 (37.04) 999 (38.31) 0.4093 1635 (37.79)

E 599 (34.88) 915 (35.09) 0.9411 1514 (35.00)

IST 582 (33.89) 880 (33.75) 0.9521 1462 (33.80)

HE, hypoechogenicity; NV, neovascularity; E, enthesopathy; IST, intrasubstance tear. ap-value < 0.001. bp-value < 0.01.

and included 380 variables from data extraction, such as median,
standard deviation, minimal, and maximal, where one exam
corresponds to one diagnostic (4.321 rows). Figure 3 represents
the study workflow process.

Machine learning and statistical
analysis

Supervised learning was used because most machine
learning applications for US involve them. Both datasets
were implemented into binary and multilabel classification
algorithms in six machine learning methods: Binary relevance
model, classifier chains model, nested stacking model,
dependent binary relevance model, staking generalization,
and random forest.

All models were trained to classify four tendon findings
(hypoechogenicity, neovascularity, enthesopathy, and
intrasubstance tear) in images with LET diagnosis. First,
each pattern was recognized individually and then the four
finding simultaneously. Different metrics were conducted to
assess the classification of machine learning models. A K-fold-
repeated-cross-validation (KFRCV) with ten as the number
of folds was used. After this process, means and confidence
intervals (CI) values were obtained.

Data were analyzed using R version 3.6.2 (R Foundation
for Statistical Computing). The following packages were used:
“EBImage” for characteristics extraction, “mlr” for each machine
learning algorithm, and “randomForest” for the random
forest (87–89). Additionally, to measure multilabel prediction
(classification) were used multilabel accuracy, sensitivity,
specificity, and receiver operating characteristic (ROC) (90).
Also, we included a positive predictive value. Differences in US
findings between women and men were assessed for significance
using the T-test and chi-squared test. The significance level was
considered p < (0.05) and 95% CI for all metrics.

Results

Common extensor tendinopathy

A total of 30,007 US images, 6.9 on average in 4,324 exams,
and medical records from 2,917 patients with a LET diagnosis
were included in the data analysis in this study. Patients’ age
was presented with a minimum value of 7 and a maximum of
91 years. Women are older than men in 1 year 47.18 ± 11.00
(p < 0.001) and also, they presented statistical differences in
hypoechogenicity finding in comparison with men (p = 0.01).
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TABLE 2 The area under the curve (AUC), sensitivity, and specificity [95% CI] values of six machine learning classifiers based on degenerative
findings in datasets A and B.

Dataset Measure Model HE [95% CI] NV [95% CI] E [95% CI] IST [95% CI]

A AUC BR 0.806 (0.81, 0.81) 0.901 (0.900, 0.902) 0.7482 (0.747, 0.749) 0.963 (0.963, 0.964)

CC 0.810 (0.81, 0.81) 0.897 (0.896, 0.898) 0.6954 (0.689, 0.701) 0.961 (0.960, 0.963)

DBR 0.804 (0.8, 0.81) 0.892 (0.891, 0.893) 0.6488 (0.647, 0.650) 0.956 (0.954, 0.958)

NST 0.806 (0.81, 0.81) 0.901 (0.900, 0.902) 0.7463 (0.745, 0.747) 0.963 (0.963, 0.964)

RF 0.928 (0.93, 0.93) 0.974 (0.973, 0.974) 0.8993 (0.898, 0.9) 0.991 (0.990, 0.991)

STA 0.806 (0.81, 0.81) 0.847 (0.846, 0.848) 0.688 (0.686, 0.689) 0.935 (0.934, 0.936)

SE BR 0.577 (0.58, 0.58) 0.704 (0.703, 0.704) 0.6568 (0.656, 0.657) 0.760 (0.759, 0.760)

CC 0.578 (0.58, 0.58) 0.702 (0.701, 0.703) 0.6234 (0.619, 0.627) 0.759 (0.758, 0.76)

DBR 0.576 (0.58, 0.58) 0.699 (0.698, 0.7) 0.594 (0.593, 0.595) 0.756 (0.754, 0.757)

NST 0.577 (0.58, 0.58) 0.704 (0.703, 0.704) 0.6556 (0.654, 0.656) 0.760 (0.759, 0.760)

RF 0.607 (0.61, 0.61) 0.741 (0.740, 0.741) 0.7522 (0.751, 0.752) 0.775 (0.774, 0.776)

STA 0.577 (0.58, 0.58) 0.676 (0.676, 0.677) 0.6187 (0.617, 0.619) 0.744 (0.743, 0.744)

SP BR 0.729 (0.73, 0.73) 0.697 (0.696, 0.697) 0.5913 (0.590, 0.591) 0.703 (0.702, 0.70)

CC 0.732 (0.73, 0.73) 0.695 (0.694, 0.696) 0.5719 (0.569, 0.574) 0.702 (0.701, 0.703)

DBR 0.728 (0.73, 0.73) 0.692 (0.691, 0.693) 0.5548 (0.554, 0.555) 0.700 (0.699, 0.701)

NST 0.729 (0.73, 0.73) 0.697 (0.696, 0.697) 0.5906 (0.590, 0.591) 0.703 (0.702, 0.704)

RF 0.820 (0.82, 0.82) 0.732 (0.732, 0.733) 0.6469 (0.646, 0.647) 0.715 (0.714, 0.716)

STA 0.729 (0.73, 0.73) 0.670 (0.670, 0.671) 0.5692 (0.568, 0.569) 0.691 (0.690, 0.691)

B AUC BR 0.830 (0.83, 0.83) 0.925 (0.923, 0.927) 0.7811 (0.778, 0.784) 0.960 (0.957, 0.963)

CC 0.830 (0.83, 0.83) 0.906 (0.901, 0.911) 0.7228 (0.714, 0.731) 0.964 (0.961, 0.966)

DBR 0.788 (0.79, 0.79) 0.846 (0.842, 0.85) 0.6477 (0.643, 0.652) 0.965 (0.963, 0.967)

NST 0.830 (0.83, 0.83) 0.926 (0.925, 0.928) 0.781 (0.777, 0.784) 0.960 (0.957, 0.963)

RF 0.888 (0.89, 0.89) 0.965 (0.964, 0.966) 0.8517 (0.849, 0.854) 0.986 (0.985, 0.987)

STA 0.829 (0.83, 0.83) 0.870 (0.866, 0.873) 0.7222 (0.717, 0.726) 0.937 (0.935, 0.940)

SE BR 0.606 (0.61, 0.61) 0.764 (0.762, 0.765) 0.6821 (0.679, 0.684) 0.804 (0.801, 0.806)

CC 0.606 (0.61, 0.61) 0.752 (0.749, 0.755) 0.6444 (0.638, 0.650) 0.807 (0.804, 0.809)

DBR 0.592 (0.59, 0.59) 0.714 (0.712, 0.717) 0.5957 (0.592, 0.598) 0.807 (0.805, 0.809)

NST 0.606 (0.61, 0.61) 0.765 (0.763, 0.766) 0.6821 (0.679, 0.684) 0.804 (0.801, 0.806)

RF 0.624 (0.62, 0.63) 0.789 (0.787, 0.790) 0.7279 (0.725, 0.73) 0.821 (0.820, 0.823)

STA 0.605 (0.6, 0.61) 0.729 (0.727, 0.732) 0.6441 (0.640, 0.647) 0.789 (0.787, 0.791)

SP BR 0.723 (0.72, 0.73) 0.660 (0.658, 0.661) 0.5983 (0.597, 0.599) 0.654 (0.653, 0.656)

CC 0.723 (0.72, 0.73) 0.653 (0.651, 0.655) 0.5779 (0.574, 0.580) 0.656 (0.654, 0.657)

DBR 0.695 (0.69, 0.7) 0.630 (0.628, 0.632) 0.5516 (0.550, 0.553) 0.656 (0.655, 0.658)

NST 0.723 (0.72, 0.73) 0.660 (0.659, 0.662) 0.5983 (0.597, 0.599) 0.654 (0.653, 0.656)

RF 0.763 (0.76, 0.76) 0.675 (0.673, 0.676) 0.623 (0.621, 0.624) 0.663 (0.662, 0.665)

STA 0.723 (0.72, 0.73) 0.639 (0.637, 0.641) 0.5776 (0.576, 0.579) 0.647 (0.645, 0.648)

AUC, area under the curve; SE, sensitivity; SP, specificity; HE, hypoechogenicity; NV, neovascularity; IST, intrasubstance tear; E, enthesopathy; BR, binary relevance model; CC, classifier
chains model; NST, nested stacking model; DBR, dependent binary relevance model; STA, staking generalization; RF, random forest.

The total of exams presented at least one degenerative finding.
US features are summarized in Table 1.

Machine learning models for a binary
classifier

Table 2 shows the binary classification performance
(AUC, sensitivity, and specificity) for both datasets (A
and B) in each of the six machine learning algorithms.

Main degenerative findings in LET (hypoechogenicity,
neovascularity, enthesopathy, and intrasubstance tear) were
considered under analysis. Focusing on AUC sensitivity and
specificity, most models performed with variability among
them. Results were described in most cases with a minimal
range of 95% CI, demonstrating a robust performance
for all models. Notably, the RF model obtained the best
results. For example, Table 2 shows dataset A, where
random forest presented the highest mean values in AUC,
sensitivity, and also specificity by each degenerative finding.
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The AUC and sensitivity showed the best performance
in IST with 0.991 [95% CI, 0.99, −0.99], and 0.775 [95%
CI, 0.77, −0.77], respectively. Instead, specificity showed
upper values in hypoechogenicity with 0.821 [95% CI, 0.82,
−0.82].

A similar situation occurred for dataset B, which showed
slightly lower values for the same findings and models.
The RF model also demonstrated the best performance for
all measures and degenerative features. Table 2 showed
the highest AUC and sensitivity values for ISR 0.937
[95% CI, 0.93–0.94] and 0.82 [95% CI, 0.82, −0.82].
Hypoechogenicity also presented better specificity than
other degenerative findings with 0.763 [95% CI, 0.72,
−0.72].

Machine learning models for a
multilabel classifier

In the previous results section, the machine learning models
assessed a binary classification for each degenerative finding.
Now, these methods used a multilabel classifier to identify
the four types of tendon findings simultaneously in both
datasets. In this scenario, the diagnosis presented different
accuracy levels in all machine learning models. When the
diagnosis was based on the combination of degenerative
findings, the random forest algorithm again presented the
best performances among the selected models. Table 3 shows
that the random forest in dataset A presented the highest
multilabel accuracy value of 0.772 [95% CI, 0.771, 0.773].
Similarly, in the condition represented in dataset B, these results
show that the model performs well in testing environments
without presenting overfitting issues. Multilabel accuracy
value was 0.723 [95% CI, 0.721, 0.726]. Additionally, high
macro and micro-AUC scores are observed in RF models
in both datasets. These results could be explained due to
the balance between sensitivity and specificity shown in RF
models. Particularly, micro-AUC observed in dataset A of
0.962 [95% CI, 0.962–0.963] and 0.942 [95% CI, 0.941–
0.943] in dataset B results are essential because aggregating
the contributions of all classes to compute the average
metric.

Diagnosis performance

Figure 4 represents dataset A, and the results show
the relation between sensitivity vs. 1-specificity across
each degenerative finding using the random forest model.
In this figure, the plot shows the higher discriminant
capacity of diagnosis detection. Most of the lines are
located progressively closer to the upper left-hand corner
in ROC space. The intrasubstance tear shows the most
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FIGURE 4

The receiver operating characteristic (ROC) curves for RF model for dataset A. Abbreviations: RF, random forest; HE, hypoechogenicity; NV,
neovascularity; IST, intrasubstance tear; E, enthesopathy; Macro, macro-AUC; Micro, micro-AUC.

significant discriminate capacity in comparison with
the other tendon injuries. However, the enthesopathy
finding presented the lowest discriminate capacity in this
model.

Discussion

This study is one of the first to present multilabel
classification models using machine learning algorithms
to detect degenerative findings and intrasubstance tear in
US images with LET diagnosis. This retrospective analysis
explicitly considered one of the most extensive series of
extensor carpi radialis brevis US images, and our machine
learning-based tool for diagnosis of LET was trained using
the largest dataset so far. The most notable outcomes in
this study were obtained by incorporating several machine
learning models based on diagnosis know condition. Excellent
results and highest values for all degenerative findings were
detected in the binary classification performance. Moreover,
when the US diagnosis was based on the combination

of degenerative findings using a multilabel classifier, the
accuracy values presented strong performance too. Our results
showed that the random forest algorithm presented the
best diagnosis performance, in both binary and multilabel
models. These results demonstrate that the implementation
of tools derived from artificial intelligence can be used
to support the imaging for tendinopathies. Collaborative
work between the radiologist and the algorithm could
improve the precision of the results, especially if the
institution does not have a radiologist specializing in the
musculoskeletal area.

Traditionally, US has been demonstrated as a cost-
effective tool for detecting abnormalities patterns in tendon
structures. Additionally, there is evidence to support the use
of US in the detection of LET. A meta-analysis published
in 2014 determined that diagnostic test accuracy appears
to be highly dependent on numerous variables, such as
operator experience, equipment, and stage of pathology.
However, US has variable sensitivity and specificity (sensitivity:
64–100%; specificity: 36–100%), decreasing the clinical
diagnosis precision (24). Another article published in
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the same year reported specifically the sensitivity and
specificity for each abnormal US finding using traditional
detection method. The hypoechogenicity presented the
best combination of diagnostic sensitivity and specificity.
It is moderately sensitive sensitivity: 0.64 [95% CI, 0.56,
0.72] and highly specific specificity 0.82 [95% CI, 0.72,
0.90]. Additionally, neovascularity specificity 1.00 [95%
CI, 0.97, 1.00)], calcifications specificity 0.97 [95% CI,
0.94, 0.99], and cortical irregularities specificity 0.96 [95%
CI, 0.88, 0.99] have strong specificity for chronic lateral
epicondylalgia (25). Our results, particularly for intrasubstance
tear detection using the binary algorithm classification
in both datasets, demonstrated a superior performance
to the traditional US diagnosis methods. In the case of
multilabel accuracy, the performance for both indicators
was lowest results of specificity and sensitivity than the
binary method. This situation could be explained because
it is difficult to find a function that minimized the error for
more classes. In other words, it increases the variability of the
response variable.

For example, in the binary classification, the enthesopathy
presented the lowest performance of the six machine learning
classifiers. Notably, in the dependent binary relevance model
from dataset B, our analysis showed that AUC was 0.647
[95% CI, 0.64, 0.65]. This result is quite similar to other
reports with a sensitivity of 0.65 and specificity of 0.86 for
this finding (77). However, our best result in the binary
classification was detecting intrasubstance tear injuries using
random forest algorithms. The performance showed an AUC
of almost 1.0 (0.99) [95% CI, 0.99, 0.99] in contrast with
the traditional US methods diagnosis for detecting common
extensor tendon tear in the lateral with lower performances
in sensitivity, specificity, and accuracy with 64.52, 85.19, and
72.73%, respectively (26).

However, one of our research strengths is the execution
of machine learning models using multilabel detection for
tendon injury findings. To date, few experiences had been
published in the musculoskeletal area using artificial intelligence
for tendon pattern detection. Some previous experiences
have used Automatic ROI Detection and Classification of
the Achilles Tendon ultrasound Images (69), and deep
learning models for automatic tracking of the muscle-tendon
junction or even measuring muscle atrophy (91). Other
disciplines have also used other classification techniques such
as neural networks or deep learning convolutional neural
networks for image detection, demonstrating excellent results.
However, CNN and DL have some drawbacks that should
be analyzed when developing predictive models. First, it
has been shown that DL requires large datasets to obtain
better performance. To handle this, transfer learning is
commonly used. However, DL architectures should also
be re-trained and model parameters should be optimized,
looking out for possible overfitting patterns. Second, DL

architectures rely on the high computational performance,
and it takes longer to prove results. In this sense, they
are more complex to implement, especially in a clinical
environment with a high demand for care, so improving
diagnostic speed without compromising diagnostic accuracy
is crucial for patients and the health system. Therefore,
machine learning algorithms are advantageous when speed
is of interest. In this case, the execution times of the
proposed method were very low, allowing it to be easily
implemented in a hospital scenario and re-trained with
new data that is daily generated. Finally, the multilabel
classification model differs from other algorithms most
commonly used in image diagnosis due to the simplicity of
its implementation.

This study also has some limitations. Firstly, our images
come from the same institution, and patients presented
similar socioeconomic conditions. Secondly, we included all
static US images from common extensor tendon US per
patient, not considering real-time and other structures or
tissues. Thirdly, we included tendons with a definitive LET
diagnosis, and we did not compare inter and intraobserver
variability between radiologists. Fourthly, we considered all
images without a region of interest, such as most of the
publications. Nevertheless, in a short time, it could be a potential
advantage. Finally, we did not repeat the US diagnosis to reduce
retrospective bias. However, our radiologist presented more
than 10 years of experience.

In conclusion, the random forest model presented the
highest sensitivity and specificity in binary and multilabel
classifiers for degenerative findings in the common extensor
tendon. In particular, intrasubstance tear detections obtained
the best performance. Machine learning models could be used
to support the US diagnosis of LET.
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