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MRI is an important tool for the early diagnosis of axial 
spondyloarthritis (axSpA) and can reduce the time to 

diagnosis by depicting early inflammatory changes (1–3). 
Subchondral bone marrow edema in the sacroiliac joints is a 
characteristic imaging feature of spondyloarthritis and a re-
quired finding to fulfill the Assessment of SpondyloArthritis 
international Society (ASAS) criterion of positive MRI find-
ings as a part of the classification criteria for axSpA. Other 
active inflammatory changes (eg, enthesitis, capsulitis, joint 
space enhancement, inflammation at the site of erosion, 

and joint space fluid) may also be present. Structural dam-
age manifests as joint erosions, subchondral sclerosis, bone 
buds, ankylosis, fat metaplasia in an erosion cavity, or fatty 
lesions in bone (1,4). However, many of these signs indi-
vidually are not specific for axSpA and may also occur in 
degenerative diseases (5,6).

Contextual interpretation of findings is therefore re-
quired for correct evaluation of MRI scans, which can be 
demanding, especially for radiologists or clinicians not 
specialized in axSpA (7,8). For example, in the French 
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Purpose:  To create a deep neural network to detect MRI changes in sacroiliac joints indicative of axSpA.
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CI: 0.81, 0.96) for structural changes indicative of axSpA. Sensitivity and specificity on the external test set were 22 of 25 patients 
(88%) and 65 of 91 patients (71%), respectively, for inflammatory changes and 22 of 26 patients (85%) and 70 of 90 patients 
(78%) for structural changes.

Conclusion:  Deep neural networks can detect inflammatory or structural changes to the sacroiliac joint indicative of axial  
spondyloarthritis at MRI.
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community hospitals in Germany (16). Patients included 
in the current study were recruited between February 2015 
and September 2020 at Charité–Universitätsmedizin Berlin.  
(b) Optimal Referral Strategy for Early Diagnosis of Axial Spon-
dyloarthritis (or OptiRef), a cross-sectional study conducted at 
Charité–Universitätsmedizin Berlin between October 2016 and 
February 2018. (c) The ASAS classification cohort, a multina-
tional and multicenter study conducted at university and com-
munity hospitals between November 2005 and October 2009. 
Patients included in the current study were recruited between 
January 2006 and December 2008.

All MRI scans were centrally evaluated between June 2019 
and June 2021.

The inclusion criterion was the availability of semicoronal 
MRI scans of the sacroiliac joint with T1-weighted sequences 
and fluid-sensitive fat-suppressed sequences (Fig 1).

The GESPIC (Ankylosing Spondylitis, Uveitis, and Crohn  
groups) and OptiRef studies were approved by the ethics  
committee of Charité–Universitätsmedizin Berlin; the ASAS 
classification study was approved by the ethics committees of the 
individual study centers in accordance with the local laws and 
regulations. All studies were conducted in accordance with the 
Declaration of Helsinki and Good Clinical Practice. Appendixes 
E1 and E2 (online) provide further details.

MRI Sequence Parameters
Most examinations in the training set were performed with a 
3.0-T MRI scanner (Skyra, Siemens Healthineers). The most 
common T1-weighted sequence was a turbo spin-echo sequence 
with repetition time of 652 msec, echo time 11 msec, and echo 
train length of four. The most used fluid-sensitive sequence 
with fat suppression was the fast spin-echo short tau inversion-
recovery sequence with repetition time between 5000 and 7760 
msec, echo time of 230 msec, inversion time of 200 msec, and 
echo train length of 12. Appendix E3 and Tables E1–E7 (online)  
provide more details.

Data Labeling
The training set included MRI scans of the sacroiliac joints  
(Fig 1) from the GESPIC–Ankylosing Spondylitis, GESPIC-
Crohn, GESPIC-Uveitis, and OptiRef cohorts. Data from 73 of 
477 patients in the training set (15%) were randomly selected as 
the validation set. Each MRI scan was evaluated by six trained 
raters (F.P., T.D., V.R.R., J.R., M.T., and D.P.) with 5–15 years 
of experience in axSpA. Raters were blinded to clinical data, as 
they evaluated pseudonymized versions of the MRI scans and 
did not have access to the other raters’ assessments. This was en-
sured by the use of a specifically developed online tool. MRI 
scans from the ASAS classification cohort (4) were used as the 
external test set. MRI scans were evaluated by seven experienced 
raters (R.G.L., X.B., W.P.M., and four other raters) with more 
than 15 years of experience, as described previously (4).

All raters evaluated whether active inflammatory changes 
indicative of axSpA were present. If so, they evaluated specific 
changes, such as bone marrow edema fulfilling the ASAS defi-
nition, capsulitis, joint space enhancement, inflammation, and 
enthesitis. The same strategy was used for structural changes: the 

Cohort of Undifferentiated Spondyloarthritis (Devenir des 
Spondylarthropathies Indifférenciées Récentes), or DESIR, dis-
agreement between two investigators occurred in 28% of MRI 
scans (9). Overall, these diagnostic challenges may lead to over- 
and underdiagnosis of axSpA. In addition, comprehensive read-
ing of MRI data sets with use of a quantitative scoring system 
is a time-consuming process. Therefore, supportive tools that 
can help interpret MRI scans of the sacroiliac joints in patients 
with suspected axSpA are needed. In this context, deep learning 
has the potential to provide supportive tools to radiologists and 
clinicians (10).

Deep convolutional neural networks have previously been 
applied to MRI data, such as for classification of multisequence 
MRI knee scans (11), prostate cancer detection (12), automated 
contouring of tumor volumes in nasopharyngeal carcinoma (13), 
and brain lesion segmentation (14). The use of convolutional 
neural networks to detect changes associated with axSpA there-
fore appears promising. However, training convolutional neural 
networks, especially with MRI data from different institutions, 
can be challenging because of differences in sequence specifica-
tions, imaging protocols, reconstruction algorithms, and spatial 
resolution among the different types of scanners. In addition, 
MRI examinations can be corrupted by artifacts caused by  
patient motion, signal instabilities, partial failure of fat suppres-
sion, or magnetic field inhomogeneities (15).

Our goal was to develop a deep neural network to detect  
inflammatory and structural changes in sacroiliac joints at MRI in-
dicative of axSpA and to overcome the aforementioned challenges.

Materials and Methods

Study Sample
This retrospective multicenter study used MRI data from three 
multicenter studies: (a) the German Spondyloarthritis Incep-
tion Cohort (GESPIC), an ongoing German multicenter incep-
tion cohort study started in 2000 that includes university and  

Abbreviations
ASAS = Assessment of SpondyloArthritis international Society, AUC = 
area under the receiver operating characteristic curve, axSpA = axial spon-
dyloarthritis, GESPIC = German Spondyloarthritis Inception Cohort

Summary
A deep learning tool was able to detect active inflammatory and 
structural changes indicative of axial spondyloarthritis at MRI of 
sacroiliac joints.

Key Results
	N This retrospective study comprised 593 patients with suspected 

axial spondyloarthritis and centrally evaluated MRI examinations 
of the sacroiliac joints.

	N The sensitivity and specificity for the detection of active inflam-
matory and structural changes were 96% and 76% and 95% and 
75%, respectively, in the validation set and 88% and 71% and 
85% and 78% in the test set.

	N The areas under the receiver operating characteristic curve for 
the detection of active inflammatory and structural changes were 
comparable in the validation (0.92 and 0.90, respectively) and test 
(0.94 and 0.89, respectively) data sets (P = .38 and .13).
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raters first assessed the presence or absence of structural changes 
compatible with axSpA globally, then specific changes (erosions, 
fat lesion, fat metaplasia in the erosion cavity, sclerosis, ankylosis, 
and bone buds).

In all sets, the reference standard for the global presence or 
absence of active inflammatory and structural lesions indicative 
for axSpA as well as global compatibility with the diagnosis of 
axSpA was defined as agreement among at least four raters. In 
the training set, if there was no majority decision, images were 
assessed in a consensus rater session.

To assess the performance of nonexpert raters, three board-
certified radiologists (K.K.B., L.C.A., and J.L.V., with 5, 6, and 
11 years of experience, respectively) with no special training in 
axSpA independently reviewed each MRI scan in the test set. 
Votes of these raters were not included in the ground truth.  
Appendix E4 (online) provides more details.

Model Training
The use of multiple scanners in this study introduced heteroge-
neity into the data, complicating the training of neural networks. 
Therefore, we first developed a three-dimensional U-Net archi-
tecture for MRI denoising, artifact reduction, and homogeniza-
tion of intensity distribution between MRI scans (Fig 2). We 
then trained a three-dimensional dual-encoder residual neural 
network 101 to classify active inflammatory changes or struc-
tural changes indicative of axSpA (Fig 3). Gradient-weighted 
class activation mappings were used to provide visual explana-
tions for the models’ decision. The inference time (ie, the com-
bined time of preprocessing and prediction) for the models was 
measured during testing. Appendixes E5–E7 (online) provide 
a detailed description of the methods. All code is available at 
https://github.com/kbressem/spa.

Statistical Analysis
Statistical analysis was performed using R (version 4.0.4, the R 
Foundation) and the “tidyverse,” “irr,“ “boot,” and “pROC” li-
braries (17–19). The classification models were evaluated on the 
validation and test sets. Receiver operating characteristic curves 
and the respective areas under the receiver operating characteris-
tic curve (AUCs) were calculated. Sensitivity, specificity, and ac-
curacy were calculated on the validation and test sets with use of 
an identical cutoff (previously calculated for the validation set). 
The 95% CIs for the AUCs were estimated by bootstrapping, 
and the CIs for metrics were calculated with use of the Clopper-
Pearson test. Interrater agreement and agreement between mod-
els and raters were assessed using the Fleiss k statistic. Bootstrap-
ping was applied to compare two AUCs. The Fisher test was used 
to compare sensitivity and specificity and prevalence. P , .05 
was considered indicative of statistically significant difference.

Results

Data Set Characteristics
The data set consisted of 389 patients from the three GESPIC 
groups, 411 patients from the OptiRef cohort, and 278 patients 
from the ASAS classification cohort. After exclusion of patients 
without the required MRI sequences (296 in the training and 
validation sets and 148 in the test set) and with incomplete la-
beling (27 in the training and validation sets and 14 in the test 
set), 369 patients (mean age, 38 years 6 12 [SD]; 194 men) 
from GESPIC, 108 patients (36 years 6 11; 57 women) from 
the OptiRef cohort, and 116 patients (36 years 6 9; 70 women) 
from the ASAS cohort were included in our analysis.

Active inflammatory changes consistent with axSpA were pres-
ent in 197 of 477 patients (41%) in the training and validation 

Figure 1:  Data selection flowchart shows the process of data selection and the creation of the training set, validation set, and external test set. AS = ankylosing spondyli-
tis, ASAS = Assessment of SpondyloArthritis international Society, DICOM = Digital Imaging and Communications in Medicine, GESPIC = German Spondyloarthritis Incep-
tion Cohort, OptiRef = Optimal Referral Strategy for Early Diagnosis of Axial Spondyloarthritis.
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sets, and 172 of 477 (36%) fulfilled the ASAS definition. In the 
test set, the prevalence was significantly lower, with 25 of 116 
patients (22%) having inflammatory changes; 21 (18%) ful-
filled the ASAS definition (P = .03). The prevalence of structural 
changes was also significantly different, with positive findings in 
244 of 477 patients (51%) in the training and validation sets and 
in 26 of 116 patients (22%) in the test set (P , .001). The Table 

provides a detailed overview of the prevalence of active inflam-
matory and structural changes as well as characteristics of the 
patients included.

Interrater Agreement
No majority consensus was achieved in 51 of 477 MRI scans 
(11%) in the training and validation sets (15 of 125 scans [12%] 

Figure 2:  Results of the denoising U-Net. Examples of fluid-sensitive sequences with fat suppression and T1-weighted paracoronal images illustrate the effect of denois-
ing by the U-Net. Original image refers to the raw image, which was resampled only to make the size and spacing uniform. Denoised image refers to the images created 
by the U-Net. The noise mask is the visualization of the image noise subtracted from the original image to create the denoised image. STIR = short tau inversion recovery.

Figure 3:  Diagram of the architecture of the classification models used. The input sequences are processed by two three-dimensional (3D) re-
sidual neural network 101 (ResNet-101) encoders that share their weights. The output of each encoder is then concatenated, pooled, and passed 
to the common classification head. The classification head consists of an adaptive concatenation pooling layer and two subsequent fully connected 
layers, each with batch normalization and dropout. Conv = convolutional layer, STIR = short tau inversion recovery.
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in GESPIC–Ankylosing Spondylitis, five of 102 scans [5%] in 
GESPIC-Crohn, 18 of 142 scans [13%] in GESPIC-Uveitis, 
and 13 of 108 scans [12%] in OptiRef), and these scans were 
adjudicated in a consensus reading session.

Overall, the raters achieved substantial agreement in both 
data sets evaluated. In the validation set, Fleiss k values of 0.62 
(95% CI: 0.50, 0.74) were achieved for active inflammatory 

changes, 0.61 (95% CI: 0.50, 0.71) for changes fulfilling the 
ASAS definition, and 0.71 (95% CI: 0.61, 0.80) for structural 
changes. In the test set, the agreement of the seven raters as mea-
sured by the Fleiss k statistic was 0.63 (95% CI: 0.53, 0.74) for 
active inflammatory changes, 0.65 (95% CI: 0.54, 0.77) for the 
detection of changes compatible with the ASAS definition, and 
0.73 (95% CI: 0.64, 0.83) for structural changes.

Baseline Characteristics of Patients in Different Study Cohorts after Data Selection

Characteristic
GESPIC-AS  
(n = 125)

GESPIC-Crohn  
(n = 102)

GESPIC-Uveitis  
(n = 142)

OptiRef  
(n = 108)

ASAS Cohort  
(n = 116)

Age (y)* 36 6 10 (33 [28–45]) 
{19–67}

37 6 13 (35 [27–47]) 
{15–73}

41 6 13 (39 [31–50]) 
{19–72}

36 6 11 (34 [28–43]) 
{16–57}

36 6 9 (36 [21–41]) 
{21–71}

Sex
  M 79 (63) 47 (46) 68 (48) 51 (47) 46 (40)
  F 46 (37) 55 (54) 74 (52) 57 (53) 70 (60)
Back pain, current 121 (97) 47 (46) 97 (68) 108 (100) 99 (85)
Inflammatory  

back pain, current
119 (95) 21 (21) 67 (47) 76 (70) 64 (55)

Duration of  
back pain (y)†‡ 

11 6 9.7 8 6 8 13 6 10 7 6 7 8 6 7

Peripheral arthritis, 
current

21 (17) 3 (3) 9 (6) 4 (4) 43 (37)

Enthesitis, current 40 (32) 8 (8) 5 (4) 10 (9) 33 (28)
Dactylitis, current 0 (0) 1 (1) 0 (0) 0 (0) 8 (7)
Inflammatory bowel 

disease, ever
9 (7) 102 (100) 3 (2) 2 (2) 8 (7)

Acute anterior  
uveitis, ever

27 (22) 12 (12) 142 (100) 12 (11) 20 (17)

Psoriasis, ever 18 (14) 6 (6) 15 (11) 11 (10) 17 (15)
Family history  

of SpA
49 (39) 30 (29) 16 (11) 15 (14) 32 (28)

Human leukocyte 
antigen B27  
positivity

109 (87) 12 (12) 111 (78) 64 (59) 47 (41)

C-reactive protein 
(mg/L)‡

13.1 6 17.7 10.2 6 25.4 4.7 6 7.6 4.0 6 6.5 3.3 6 13.8

Diagnosed with axial 
spondyloarthritis

125 (100) 10 (10) 74 (52) 57 (53) 89 (77)

Active inflammatory 
changes indicative 
of SpA at MRI of 
sacroiliac joints

86 (67) 11 (11) 57 (40) 43 (40) 25 (22)

Active sacroiliitis at  
MRI according  
to the ASAS  
definition

75 (60) 11 (11) 47 (34) 39 (37) 21 (18)

Structural changes 
indicative of SpA  
at MRI of sacroiliac 
joints

124 (99) 13 (13) 64 (45) 43 (40) 26 (22)

Note.—Unless otherwise specified, data are numbers of patients, with percentages in parentheses. The training and validation sets consisted 
of data from the German Spondyloarthritis Inception Cohort (GESPIC) and Optimal Referral Strategy for Early Diagnosis of Axial 
Spondyloarthritis (OptiRef ) cohort. The test set consisted only of data from the Assessment of SpondyloArthritis international Society 
(ASAS) cohort. AS = ankylosing spondylitis, SpA = spondyloarthritis.
* Data are means 6 SDs, with the medians in parentheses, IQRs in brackets, and ranges in curly braces.
† In patients with back pain.
‡ Data are means 6 SDs.
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Detection of Active Inflammatory Changes Indicative of axSpA
Compared with the reference standard (majority decision of all 
experienced raters), the model for the detection of active inflam-
matory changes showed an AUC of 0.92 (95% CI: 0.83, 0.97) 
and an accuracy of 61 of 73 patients (84% [95% CI: 73, 91]) 
in the validation set. In the test set, there was no significant dif-
ference in performance, with an AUC of 0.94 (95% CI: 0.84, 
0.97) and an accuracy of 87 of 116 patients (75% [95% CI: 66, 
83]; P = .38), despite a significantly lower prevalence (P = .03).

In the validation set, the model had a sensitivity of 26 of 27 
patients (96% [95% CI: 81, 100]) and specificity of 35 of 46 pa-
tients (76% [95% CI: 61, 87]) for detecting active inflammatory 

changes. In the test set, the model sensitivity was 22 of 25 pa-
tients (88% [95% CI: 69, 97]) and specificity was 65 of 91 pa-
tients (71% [95% CI: 61, 80]).

For the detection of active inflammatory changes fulfilling the 
ASAS definition (bone marrow edema), the AUC and accuracy 
on the validation set were 0.86 (95% CI: 0.73, 0.90) and 60 of 73 
patients (82% [95% CI: 71, 90]), respectively. In the test set, the 
model showed an AUC of 0.88 (95% CI: 0.80, 0.95) and an ac-
curacy of 90 of 116 patients (78% [95% CI: 69, 85]; P = .75). The 
model’s sensitivity in the test set was similar at 18 of 21 patients 
(86% [95% CI: 64, 97]; P = .25), with a corresponding specificity 
of 72 of 95 patients (76% [95% CI: 68, 86]; P = .19).

Figure 4:  Confusion matrices for the performance of the classification models on the test and validation sets for each class compared with the  
reference standard (consensus of at least four experienced raters). Accuracy, sensitivity, and specificity of individual raters are reported in Tables  
E8–E10 (online). Analysis of discordant MRI scans for active inflammatory changes and ASAS-compatible changes showed that imaging artifacts, 
such as field bias and partial failure of fat suppression, might have led to some false-positive predictions (n = 8). The loss of detail after denoising 
could have led to the fact that small erosions were no longer delimitable, leading to false-negative predictions for structural changes. In some MRI 
scans (n = 3), false-positive predictions for structural changes also seemed to be influenced by degenerative changes.
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The confusion matrices of the diagnostic performance of 
the models for the test and validation groups are shown in 
Figure 4. Figure 5 compares the performance of the individual 
raters with that of the models. Figure 6 provides receiver op-
erating characteristic curves of the model performance on the 
test and validation sets along with sensitivity and specificity 
estimates for the experienced human raters. Additional infor-
mation on individual accuracy for each rater is given in Tables 
E8 and E9 (online).

Figures 7 and E1 (online) indicate example gradient-weighted 
class activation mappings to visualize the models’ decisions and 
highlight image regions relevant to model predictions.

Detection of Structural Changes Indicative of axSpA
In the validation set, the model had an AUC of 0.90 (95% CI: 
0.82, 0.96) for the detection of structural changes and an overall 
accuracy of 62 of 73 patients (85% [95% CI: 75, 92]). The as-

sociated sensitivity and specificity were 35 of 37 patients (95% 
[95% CI: 82, 99]) and 27 of 36 patients (75% [95% CI: 58, 
94]), respectively.

In the external test data, the AUC and accuracy were 0.89 
(95% CI: 0.81, 0.96) and 92 of 116 patients (79% [95% CI: 71, 
86]), respectively. Compared with the validation set, sensitivity 
and specificity were similar at 22 of 26 patients (85% [95% CI: 
65, 96]; P = .22) and 70 of 90 patients (78% [95% CI: 66, 84]; 
P = .82), respectively.

Performance of Nonexpert Raters
The three board-certified radiologists who were not trained  
in axSpA had a mean sensitivity and specificity of 21 of 25 
patients (83% [95% CI: 63, 91]) and 76 of 91 patients (84% 
[95% CI: 75, 91]), respectively, for detecting active inflam-
matory changes, 20 of 25 (79% [95% CI: 56, 93]) and 80 of 
91 (87% [95% CI: 79, 93]) for active inflammatory changes 

Figure 5:  Diagnostic performance of individual raters and models. Dot plots show accuracy, sensitivity, and specificity (as percentages) for all seven 
raters on the test set and the performance of the classification models alongside 95% CIs (horizontal lines). The dashed lines indicate the mean of all raters. 
Individual values alongside P values for significance of differences between the human raters and the model are available in Table E8 (online). ASAS = As-
sessment of SpondyloArthritis international Society.
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fulfilling the ASAS definition, and 23 of 25 (92% [95% CI: 
75, 90]) and 76 of 91 (83% [95% CI: 74, 90]) for structural 
changes indicative of axSpA. For active inflammatory changes, 
the model showed similar sensitivity (22 of 25 patients, 88% 
[95% CI: 69, 97]; P = .34) to that of the nonexpert radiolo-
gists. Details on the individual performance of the radiologists 
can be obtained from Table E10 (online).

Approximation of Inference Time
Image reading and preprocessing (resampling, bias correc-
tion) took an average of 16.2 seconds 6 0.0567 (SD) per im-
age. Denoising with the U-Net took 1.25 seconds 6 0.0151 
per MRI scan but had to be applied to T1-weighted MRI 
scans and fluid-sensitive, fat-suppressed MRI scans individu-
ally. The average prediction time for each MRI scan in the 
entire data set was 7.19 seconds 6 0.0673 on the validation 
set and 10.5 seconds 6 0.108 on the test set (approximately 
100 msec per item). Overall, the estimated inference time for 
loading, preprocessing, and prediction for a single examina-
tion was 18.9 seconds.

Discussion
Interpretation of MRI scans associated with axial spondyloar-
thritis (axSpA) requires expertise in characteristic findings of the 
disease and is time-consuming. We developed a deep learning 
tool for detecting changes indicative of axSpA at MRI, which 
was evaluated against the performance of seven international ex-
perienced raters. The deep learning tool showed a sensitivity of 
88% for detecting inflammatory changes indicative of axSpA.

MRI allows the detection of inflammatory changes at an ear-
lier stage than radiography and is thus increasingly used (20,21). 
However, correctly identifying and interpreting changes to the 
sacroiliac joint as characteristic of axSpA can be challenging, 
especially for nonexperts, who have a lower reliability than ex-
perienced readers (8). One reason for this may be the overlap 
between inflammatory and degenerative findings. For example, 
bone marrow edema may occur in axSpA due to mechanical 
stress or in osteitis condensans ilii, making it difficult for nonex-
perts to make an accurate diagnosis (22,23). In our study, we also 
observed that radiologists without expertise in axSpA showed a 
lower diagnostic performance than domain experts did.

Figure 6:  (A–F) Receiver operating characteristics curves and associated areas under the receiver operating characteristic curves (AUCs) for model performance together 
with estimates of the diagnostic accuracies compared with the individual human experts. A, C, and E represent the receiver operating characteristic curves for diagnostic perfor-
mance in the validation set, while the curves for the test set are given in B, D, and F. The model performance did not exceed that of the trained experts but came close, especially 
for the detection of active inflammatory changes. Three board-certified radiologists who did not undergo specific training for axial spondyloarthritis imaging also scored each 
examination in the test set. Their performance is indicated by the orange symbols in B, D, and F. 
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A strength of our study is the inclusion of MRI scans acquired 
on different machines with different settings (thus reflecting real 
clinical practice), the central standardized evaluation of images 
by experts, and the use of an external test set. External test sets 
allow for more realistic evaluation of deep learning models, as 
recently emphasized in two meta-analyses by Liu et al (24) and 
Kim et al (25). Our test set had a significantly lower prevalence of 
axSpA, with the use of different scanners and the deployment of 
different raters. Nevertheless, our developed models generalized 
to the new data without a significant decrease in performance.

The generalizability of our models could be due to the large 
heterogeneity of the training data. Mårtensson et al (26) recently 
investigated the importance of heterogeneous training. A criti-
cism they presented was that training with curated research data 
does not represent a realistic clinical setting and will lead to lower 
performance when the models are applied to data acquired with 

different scanners and protocols. However, heterogeneous data 
can also complicate training and require more extensive prepro-
cessing to normalize the images, which is time-consuming. Ran 
et al (27) and Chauhan and Choi (28) have therefore proposed 
the use of neural networks to preprocess MRI scans, similar to 
the approach presented in our study. Our study demonstrates 
the effectiveness of this approach and the positive impact on 
generalizability, as shown by the ablation presented in Appendix 
E8 (online).

Our study has several limitations. First, the consensus of mul-
tiple experts was used as the reference standard because there 
is no true reference standard for the presence of axSpA. Nev-
ertheless, the consensus of multiple readers can still be wrong, 
possibly introducing noise into the data set and affecting model 
performance. Second, the prevalence of axSpA in the test set 
was low, which may introduce uncertainty in the assessment of 

Figure 7:  Example of gradient-weighted class activation mapping (Grad-CAM) for the classification model. In this MRI scan in a 41-year-old woman with confirmed 
axial spondyloarthritis, the model correctly predicted the presence of structural changes, active inflammatory changes, and Assessment of SpondyloArthritis international 
Society–compatible changes. The scan consisted of a semicoronal T1-weighted and a semicoronal short tau inversion-recovery sequence. Changes are best seen in the 
region of the left sacroiliac joint, where the model also showed the strongest activations. The magnification is approximately 32.
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performance. Third, in GESPIC-Uveitis and OptiRef, MRI was  
performed in only a subset of patients, which could introduce  
selection bias. Fourth, our models were trained with semicoro-
nal images only, so different orientations could lead to model 
failure. Fifth, we chose global labels for model training and did 
not provide a quadrant-based analysis of the sacroiliac joints, 
which would have allowed a more spatially accurate assessment 
of different joint regions. Sixth, the diagnostic performance of 
the models is not evidence of their clinical utility. Further trials 
are necessary to evaluate if the use of the models translates into 
a benefit for patients. Finally, because of the variety of scanners 
and protocols used, we were unable to provide imaging param-
eters for all MRI scans, which limits the reproducibility of our 
data. Nevertheless, we believe that the approach used in our 
study will generalize to new scanner protocols, as it generalized 
to the test set.

In conclusion, a deep learning tool was developed for the 
detection of axial spondyloarthritis (axSpA)–associated abnor-
malities at MRI. The deep learning tool could help clinicians 
detect inflammation earlier and properly to initiate appropriate 
treatment in patients with axSpA. In addition, it could serve as 
a classification tool in clinical trials. Because accurate diagnosis 
of axSpA depends on experience, our tool could be particularly 
helpful for hospitals without specialization in axSpA. However, 
future research is needed to evaluate the clinical value of the gain 
in accuracy with our deep learning tool and the impact on ther-
apy, ideally in the form of a prospective study.

Acknowledgments: We thank our colleagues who performed annotation of the 
images from the ASAS classification cohort: Pedro Machado, MD, PhD; Mikkel 
Østergaard, MD; Susanne Juhl Pedersen, MD, PhD; and Ulrich Weber, MD. Further,  
we thank Torsten Karge, Dipl Wi-Ing, for the development of the MRI reading in-
terface for GESPIC and OptiRef images and Joel Paschke, BSc, for the development  
of the scoring interface for ASAS images. L.C.A. is grateful for her participation  
in the Berlin Institute of Health (BIH) Charité–Junior Clinician and Clinician 
Scientist Program, and K.K.B. is grateful for his participation in the BIH Charité–
Digital Clinician Scientist Program, all funded by the Charité–Universitätsmedizin 
Berlin and the BIH. J.R. is grateful for her participation in the BIH Charité–Junior 
Clinician and Clinician Scientist Program.

Author contributions: Guarantors of integrity of entire study, K.K.B., D.P.; study 
concepts/study design or data acquisition or data analysis/interpretation, all authors; 
manuscript drafting or manuscript revision for important intellectual content, all 
authors; approval of final version of submitted manuscript, all authors; agrees to 
ensure any questions related to the work are appropriately resolved, all authors;  
literature research, K.K.B., L.C.A., K.G.A.H., S.M.N., J.L.V., D.P.; clinical  
studies, F.P., K.G.A.H., T.D., L.S., M.P., M.T., J.L.V., D.P.; experimental studies, 
K.K.B., S.M.N., J.L.V.; statistical analysis, K.K.B., J.L.V., D.P.; and manuscript 
editing, K.K.B., L.C.A., F.P., K.G.A.H., T.D., S.M.N., M.R.M., B.H., M.P., 
V.R.R., X.B., W.P.M., J.L.V., D.P.

Disclosures of conflicts of interest: K.K.B. No relevant relationships. L.C.A. No 
relevant relationships. F.P. Grants to institution from UCB, Novartis, and Lilly; con-
sulting fees from AbbVie; Celgene, Janssen, Novartis, and UCB; payment for lectures 
from Amgen, AbbVie, Bristol Myers Squibb, Celgene, Janssen, MSD, Novartis, Pfizer, 
Roche, and UCB; support for attending meetings or travel from Celgene; Janssen, 
Pfizer, and Novartis; participation on a data safety monitoring board or advisory 
board for AbbVie, Celgene, Janssen, Novartis, and UCB; leadership or fiduciary 
role with ASAS, Y-ASAS, GRAPPA, Y-GRAPPA, EULAR/EMEUNET, DGRh/
AGJR, DEGUM, and Rheumazentrum Berlin; receipt of research material from 
Aidan. K.G.A.H. Consulting fees from AbbVie; payment for lectures from MSD, 
Pfizer, and Novartis; cofounder of BerlinFlame. T.D. Grant from the Berlin Institute 
of Health; payment for lectures from Novartis, MSD, Canon Medical Systems, and 
AbbVie; participation in an educational program for Lilly. L.S. No relevant relation-
ships. S.M.N. Grants from the Berlin Institute of Health and Deutsche Forschun-

gsgemeinschaft; payment for lectures from Bayer, Bracco Imaging, Canon Medical 
Systems, Guerbet, Teleflex/Vidacare, and Vital Images. M.R.M. No relevant relation-
ships. B.H. No relevant relationships. M.P. Support for attending meetings or travel 
from UCB; participation on a data safety monitoring board or advisory board from 
Novartis. V.R.R. No relevant relationships. H.H. Payment for lectures from AbbVie, 
MSD, Janssen, Roche, Pfizer, and Sobi; support for attending meetings or travel from 
AbbVie, Novartis, and UCB; participation on a data safety monitoring board or ad-
visory board for Janssen, Sobi, and Novartis. J.R. Support for attending meetings 
or travel from AbbVie, Novartis, and UCB. M.T. No relevant relationships. R.G.L. 
Consulting fees from CARE Arthritis Image Analysis Group and Parexel; honoraria 
for lectures from the Dr Sulaiman Al Habib Medical Group. X.B. No relevant rela-
tionships. W.P.M. No relevant relationships. J.L.V. Nonfinancial support from Bayer, 
Guerbet, Medtronic, and Merit Medical; personal fees from Merit Medical. D.P. Re-
search grants to institution from AbbVie, Lilly, MSD, Novartis, and Pfizer; consulting 
fees from AbbVie, Biocad, Lilly, Gilead, GlaxoSmithKline, Janssen, MSD, Novartis, 
Pfizer, Samsung Bioepis, and UCB; participation on a data safety monitoring board or 
advisory board for AbbVie, Lilly, Gilead, GlaxoSmithKline, Janssen, MSD, Novartis, 
Pfizer, and UCB.

References
	 1.	 Sieper J, Poddubnyy D. Axial spondyloarthritis. Lancet 2017; 

390(10089):73–84.
	 2.	 Sieper J, Rudwaleit M, Baraliakos X, et al. The Assessment of Spondylo-

Arthritis international Society (ASAS) handbook: a guide to assess spon-
dyloarthritis. Ann Rheum Dis 2009;68(suppl 2):ii1–ii44.

	 3.	 Poddubnyy D, Rudwaleit M, Haibel H, et al. Rates and predictors of ra-
diographic sacroiliitis progression over 2 years in patients with axial spon-
dyloarthritis. Ann Rheum Dis 2011;70(8):1369–1374.

	 4.	 Maksymowych WP, Lambert RG, Østergaard M, et al. MRI lesions in the 
sacroiliac joints of patients with spondyloarthritis: an update of defini-
tions and validation by the ASAS MRI working group. Ann Rheum Dis 
2019;78(11):1550–1558.

	 5.	 Baraliakos X, Richter A, Schmidt CO, Braun J. Response to: ‘Correspon-
dence on ‘Which factors are associated with bone marrow oedema suspi-
cious of axial spondyloarthritis as detected by MRI in the sacroiliac joints 
and the spine in the general population?’ by Su et al. Ann Rheum Dis 
2021;80(4):469–474.

	 6.	 Poddubnyy D, Weineck H, Diekhoff T, et al. Clinical and imaging charac-
teristics of osteitis condensans ilii as compared with axial spondyloarthri-
tis. Rheumatology (Oxford) 2020;59(12):3798–3806.

	 7.	 Cereser L, Zabotti A, Zancan G, et al. Magnetic resonance imaging as-
sessment of ASAS-defined active sacroiliitis in patients with inflammatory 
back pain and suspected axial spondyloarthritis: a study of reliability. Clin 
Exp Rheumatol 2021;39(6):1331–1337.

	 8.	 van den Berg R, Lenczner G, Thévenin F, et  al. Classification of axial 
SpA based on positive imaging (radiographs and/or MRI of the sacroiliac 
joints) by local rheumatologists or radiologists versus central trained read-
ers in the DESIR cohort. Ann Rheum Dis 2015;74(11):2016–2021.

	 9.	 Bakker PA, van den Berg R, Lenczner G, et al. Can we use structural le-
sions seen on MRI of the sacroiliac joints reliably for the classification of 
patients according to the ASAS axial spondyloarthritis criteria? Data from 
the DESIR cohort. Ann Rheum Dis 2017;76(2):392–398.

	10.	 Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E.  
Convolutional neural networks for radiologic images: a radiologist’s guide. 
Radiology 2019;290(3):590–606.

	11.	 Bien N, Rajpurkar P, Ball RL, et al. Deep-learning-assisted diagnosis for 
knee magnetic resonance imaging: Development and retrospective valida-
tion of MRNet. PLoS Med 2018;15(11):e1002699.

	12.	 Song Y, Zhang YD, Yan X, et al. Computer-aided diagnosis of prostate 
cancer using a deep convolutional neural network from multiparametric 
MRI. J Magn Reson Imaging 2018;48(6):1570–1577.

	13.	 Lin L, Dou Q, Jin YM, et al. Deep learning for automated contouring of 
primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiol-
ogy 2019;291(3):677–686.

	14.	 Kamnitsas K, Ledig C, Newcombe VFJ, et  al. Efficient multi-scale 3D 
CNN with fully connected CRF for accurate brain lesion segmentation. 
Med Image Anal 2017;36:61–78.

	15.	 Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias cor-
rection. IEEE Trans Med Imaging 2010;29(6):1310–1320.

	16.	 Rudwaleit M, Haibel H, Baraliakos X, et al. The early disease stage in axial  
spondylarthritis: results from the German Spondyloarthritis Inception 
Cohort. Arthritis Rheum 2009;60(3):717–727.

	17.	 Robin X, Turck N, Hainard A, et al. pROC: an open-source package for 
R and S1 to analyze and compare ROC curves. BMC Bioinformatics 
2011;12(1):77.



Bressem et al

Radiology: Volume 000: Number 0—Month 2022  n  radiology.rsna.org	 11

	18.	 Wickham H, Averick M, Bryan J, et al. Welcome to the Tidyverse. J Open 
Source Softw 2019;4(43):1686.

	19.	 Gamer M. irr: Various coefficients of interrater reliability and agreement. 
https://cran.r-project.org/web/packages/irr/irr.pdf. Published 2010. Ac-
cessed September 2021.

	20.	 Rudwaleit M, Jurik AG, Hermann KG, et al. Defining active sacroiliitis 
on magnetic resonance imaging (MRI) for classification of axial spondy-
loarthritis: a consensual approach by the ASAS/OMERACT MRI group. 
Ann Rheum Dis 2009;68(10):1520–1527.

	21.	 van der Heijde D, Rudwaleit M, Landewé RB, Sieper J. Justification for 
including MRI as a tool in the diagnosis of axial SpA. Nat Rev Rheuma-
tol 2010;6(11):670–672.

	22.	 de Winter J, de Hooge M, van de Sande M, et al. Magnetic resonance 
imaging of the sacroiliac joints indicating sacroiliitis according to the As-
sessment of SpondyloArthritis international Society definition in healthy 
individuals, runners, and women with postpartum back pain. Arthritis 
Rheumatol 2018;70(7):1042–1048.

	23.	 Weber U, Jurik AG, Zejden A, et  al. Frequency and anatomic distri-
bution of magnetic resonance imaging features in the sacroiliac joints 
of young athletes: exploring “background noise” toward a data-driven 

definition of sacroiliitis in early spondyloarthritis. Arthritis Rheumatol 
2018;70(5):736–745.

	24.	 Liu X, Faes L, Kale AU, et  al. A comparison of deep learning perfor-
mance against health-care professionals in detecting diseases from medi-
cal imaging: a systematic review and meta-analysis. Lancet Digit Health 
2019;1(6):e271–e297.

	25.	 Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of stud-
ies reporting the performance of artificial intelligence algorithms for diagnos-
tic analysis of medical images: results from recently published papers. Korean 
J Radiol 2019;20(3):405–410.

	26.	 Mårtensson G, Ferreira D, Granberg T, et  al. The reliability of a deep 
learning model in clinical out-of-distribution MRI data: a multicohort 
study. Med Image Anal 2020;66:101714.

	27.	 Ran M, Hu J, Chen Y, et al. Denoising of 3D magnetic resonance im-
ages using a residual encoder-decoder Wasserstein generative adversarial 
network. Med Image Anal 2019;55:165–180.

	28.	 Chauhan N, Choi BJ. Denoising approaches using fuzzy logic and convo-
lutional autoencoders for human brain MRI image. Int J Fuzzy Logic Intell 
Syst 2019;19(3):135–139.




