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Lecture Objectives

Describe working models of functional brain
dynamics

Review the dynamics of nociceptive and anti-
nociceptive peripheral and central networks

Overview techniques of functional
neuroimaging

Demonstrate modulation of brain networks in
clinical pain by non-pharmacologic
interventions






Transcranial Magnetic Stimulation

Human Brain Mapping, May 2004



Integrative Biopsychosocial Physiology

Christakis and Fowler, 2007



Memory Encoding Network
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Brain Networks Nodes, Links and Hubs

Large Scale Network

Buckner, et al, 2009
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MRI Techniques

Anatomical MRI Angiogram Structural MRI
(T1-weighted) (blood vessels map) (gray matter thickness map)

61,351,90)

Anatomical MRI | "ss"i‘:unct_ional MRI 4 Diffusion Tensor MRI
(T2-weighted) (activation to music) (White matter tracts)

Martinos Imaging Center, MGH
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What is a task fMRI?

: Neural »_ MR fMRI
Stimulus it M
. response 7 Scanner esponse
pain
motor
sensory
cognitive

Huettel, 2004



Space-Time Structure of Couplings




fIMIRI Acute Pain (Salience) Network




Nociceptive Processing Network




Resting State Default Mode Network

Brain regions more active at rest (internal focus) than during externally focused
tasks (e.g. visual, motor, somatosensory) includes inferior parietal lobule (IPL),
posterior cingulate cortex / precuneus (PCC), medial prefrontal cortex (MPC)
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Shulman et al., 1997
Fox et al., 2005
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The Pain Revolution

Melzack R, Wall PD: Pain mechanisms: a new theory.
Science. 1965 Nov 19;150(699):971-9

Engel GL: The need for a new medical model: a challenge
for biomedicine. Science. 1977 Apr 8;196(4286):129-36



Pain Processing Pathways

Pain Processing Pathways
Third ventricle
Hypothalamus

Somatosensory
cortex.

Amygdala

Cortex




Gate Mechanism of Anti-nociception
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Biopsychosocial Model

Anatomic

Physiologic

Psychosocial




Chronification of Pain

Acute pain
(transient)

Bio

Peripheral

Objective findings

Structural injury

Components

Chronic pain
(spontaneous)

Psychosocial

Central sensitization

Subjective reports

Functional syndrome

Inter-relationships
(systems biology)



Expectancy Effects for Pain
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Evolution of a Chronic Pain Syndrome
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Neural Correlates of Chronic Pain

Spontaneous pain intensity is encoded:

hedonic and emotional learning
(medial PFC, rACC, orbitofrontal cortex)

reward and goal direction
(striatum)

fear behavior
(amygdala)

Apkarian, 2008



Neuromodulation of Cortical Plasticity

4 A
Peripheral receptors

Cortical representation
\_ Y, Nelson, 2003




Bruce Rosen, MD, PhD
Athinoula A Martinos Center
HMS MGH MIT



Digital Mapping S1 Somatotopy

The somatotopic digit homuncular organization in the human primary
somatosensory cortex (S1) was originally mapped by Penfield in 1937.
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Acupuncture and Carpal Tunnel Syndrome

Carpal tunnel syndrome (CTS) is the most common entrapment
neuropathy = U.S. prevalence 3.72%".

The CTS vicious cycle

ischemia,

inflammation

I

1 pressure

in carpal tunnel

damage nerve
_> ]
microvasculature
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< = & carpal
fibrosis Carpal ligament
bones

| %

Martinos Imaging Center, MGH

pain + paresthesias in
1t to 4th digits

lpapanicolaou, et al. J Hand Surg. 2001; 26(3):460-6




Maps for Resting DMIN Connectivity

DEFAULT MODE NETWORK
Before ACUP After ACUP

-

DMN TEMPLATE

MGH/MIT/HMS Martinos Center for Biomedical Imaging



CTS Baseline vs. Post-Acupuncture — Digit 3

CTS baseline

Ml

CTS Post-Acup

(contra) © (ipsi)

SII

Martinos Imaging Center, MGH



BRAIN 2017: Page | of 14 | 1

doi:10.1093/brain/awx0 15

A JOURNAL OF NEUROLOGY

Rewiring the primary somatosensory cortex in
carpal tunnel syndrome with acupuncture

Yumi Maeda,'** Hyungjun Kim,"3’* Norman Kettner,? Jieun Kim,'? Stephen Cina,’
Cristina Malatesta,* Jessica Gerber,' Claire McManus,? Rebecca Ong-SutherIand,4
Pia Mezzacappa,I Alexandra Libby,l Ishtiaq I"Iawla,I Leslie R. Morse,5 Ted ). Kaptchuk,6

Joseph Audette’ and Vitaly Napadow''?




Rewiring S-1 in CTS with Acupuncture
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Acupuncture Clinical Measures

BCTQ Symptom Severity Scale
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Acupuncture NCV Improvement

A Median Nerve Conduction Latency
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S-1 DTl (white matter)
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eural Mechanism of Acupuncture

A Model: Somatotopically distinct mechanisms for local vs. distal acupuncture for CTS
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Brainstem autonomic nuclei

Neuroimaging brainstem circuitry supporting
cardiovagal response to pain: a combined heart rate
variability/ultrahigh-field (7T) functional magnetic
resonance imaging study

Philos Trans A Math Phys Eng Sci. 2016 May

PHILOSOPHICAL TRANSA:! CTIONS
OF THE ROYAL SOCIETY A
MATHEMATICAL P-YSICAL AND ENGINEERING SOENCES




Central Autonomic Network
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The Functional Anatomy of the Inflammatory;Reflex

Pavlov, Tracey: Immunol Res. 2015




Brainstem Autonomic Nuclei

@ Obex + 23 mm
i) Obex + 6 mm
(i) Obex —2 mm
x=—2mm
PAIN < REST- I W + PAIN<REST
-35 0 35
(b) = HF-HRV == RU/Amb fMRIsignal
REST PAIN
1.0 1.0
0.5 0.5
04 - (1 :
0 time (s) 350 0 time (s) 350
(c)
1 REST PAIN

- o ] T
[~ =0 |
€25 o [ ) , mectzm|
= g .2 I_l [
o = - -
e o _g 5 —1 :
2 Oz ‘
o o =

RVM RUVAmb

|
(]

T

=)



Brainstem Autonomic Nuclei

Obex + 30 mm
Obex + 9 mm
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Neural Correlates of Spinal Manipulative
Therapy
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Introduction

e Pain perception is generated by a range of experiences
from acute tissue injury to ongoing chronic pain.
Chronic pain shifts brain resources from nociceptive
networks to those involved with cognition, emotion,
motivation and autonomic regulation.

e fMRI has identified maladaptive structural and
functional neural networks in cognitive and emotional
pain processing networks, reinforcing psychosocial
factors in chronic pain.

e The neural correlates of many pharmacological and
nonpharmacological interventions for chronic pain are
still unknown, including Spinal Manipulative Therapy.



The principal aim was to assess the brain correlates of
pain-related fear, and whether SMT could modulate it.

A perceptual probe was utilized consisting of a pain-
related fear experience (videos) designed to provoke
measures of clinical pain and fear in patients with
chronic non-specific low back pain.

fMRI brain mapping was obtained in both patients and
controls before and after viewing videos of maneuvers.

Correlations of clinical and fMRI BOLD were assessed.



Lumbar SMT, was delivered by one of three chiropractic
physicians.

Before and after SMT, the participants:

rated the level of their low back pain and current level of anxiety

watched videos of gender-matched model perform maneuvers
patients had previously identified as pain/fear provoking. After
each maneuver video, patients used a button box to rate:

1. "fear about performing this exercise" (0 - not fearful at all; 100 -
extremely fearful)

2. "pain expected when performing this exercise" (0 - no pain at all; 100 -
most intense pain imaginable)
completed fMRI scans to assess brain BOLD response to video
viewing.



e fMRI data were collected using a “simultaneous multi-
slice” sequence (SMS), on a 3T Siemens Skyra scanner
equipped with a 32 channel head coil. Whole brain
T2*-weighted gradient echo BOLD EPI pulse sequence
(TR/TE =1.25sec/33ms, flip angle=90°, voxel
size=2x2x2mm, number of slices=75).

e Structural volumes obtained with multi-echo MPRAGE.



DEMOGRAPHICS

Low Back Pain Healthy Control

N 15 16

Mean Age 36.9(9.76) 37.4(10.2)

Sex 8F,7M 8F,8M

Following SMT:

1. patients experienced less clinical pain (p<0.01)

2. expected less pain in future back-stressing maneuvers
(p<0.05).

These measures significantly correlated (p<0.05).
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LBP — HC
(Painful-Nonpainful)

Right
dorsolateral PFC

Mean Z-value

Mean Z-value

Non-painful

Left anterior insula/
ventrolateral PFC

Mean Z-value

Mean Z-value
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