September 2011

Topics of Interest
• Acupuncture
• Low Back Pain / Lumbar Spine
• Whiplash Injuries
• Headache / Migraine
• Neck Pain / Cervical Spine
• Shoulder
• Weight Management
• Nutrition
• Sports Medicine
• Foot Orthoses
• Biomechanics
• Osteoarthritis
• Aging
• Pain
• TENS
• Pediatrics
• Fertility
• Cardio Disease
• Health Care Reform

Dr. Kettner’s review of Differences in cortical response to acupressure and electroacupuncture stimuli.

To order full text of the article being reviewed, choose #1 from the citation list under “Acupuncture.”

Harvard Medical School, Martinos Center for Biomedical Imaging, Charlestown, MA 02129
Department of Radiology, Logan College of Chiropractic, Chesterfield Mo 63006

The neural processing of somatosensory inputs including touch and nociception engages multiple interacting brain networks including those regulating emotional, autonomic, cognitive and motor behavior. A sensory experience may evolve into a perception and over time is modified by learning, memory and our individual experience. If we experience cervical spinal pain following an auto accident, nociceptor inflammation from damaged tissue activates somatosensory inputs that produce local and referred pain, accelerate our heart rate and blood pressure, activate abnormal postural tone that reduces range of motion and we may experience anxiety and depression. The integration of the somatosensory system across all the neural systems is a remarkable property of the brain that helps ensure our survival in a complex and potentially threatening environment.

Over the last 20 years, the connectivity and systems interaction of somatosensory processing has been examined by multiple functional neuroimaging tools. These have included positron emission tomography (PET) functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). In the MEG, neuronal activity is localized by measuring the magnetic field oscillations arising from fluctuating extracellular neuronal currents. Moving electrical currents induce an extremely weak magnetic field measured in picotesla (10⁻¹² T). The temporal resolution of MEG is in milliseconds in comparison to seconds with fMRI. Neural events are detected in high temporal resolution and display oscillations at different frequencies, representing sensory, motor and cognitive activity. High temporal resolution indicates precisely “when” a neural event has occurred.

Review continues on page 6.

ACUPUNCTURE

Low Back Pain / Lumbar Spine

|---|---|
Whiplash Injuries

Headache / Migraine

Neck Pain / Cervical Spine

Shoulder

Weight Management

Nutrition

Sports Medicine

Foot Orthoses

Biomechanics

Osteoarthritis

Aging

Pain

Transcutaneous Electrical Nerve Stimulation

Pediatrics

Fertility

Dr. Kettner’s review continued from page 1.

There is a sizeable and growing body of in vivo neuroimaging evidence, (majority is fMRI) that has mapped the underlying cortical and sub-cortical neural responses to acupuncture stimuli. Acupuncture analgesia develops from the activation of the endogenous anti-nociception circuits including opioidergic, noradrenergic, dopamine and other neurotransmitters. Evidence for neuroplastic reorganization of S-1 in carpal tunnel syndrome and its favorable modulation by acupuncture has been published by Napadow et al. The somatosensory system is triggered by conditioning stimuli such as acupuncture, but little is known regarding its spatiotemporal profile within the somatosensory cortex.

The study design by Witzel et al employed the high temporal resolution of a 306-channel MEG Vectorview (Elekta Neuromag Oy, Helsinki, Finland) housed in a custom built six-layer magnetically shielded room to record two different forms of acupuncture stimuli, electroacupuncture and acupressure. Responses were recorded in the S-1 of 16 normal volunteers naive to acupuncture. MEG responses were recorded from tactile (acupressure) and electrical current (both delivered at 2 Hz) applied to needles (electroacupuncture) in the forearm at acupoint PC-6 for 15 minutes.

Data analysis yielded contralateral S-1 localization (BA 3b) for both electroacupuncture and acupressure stimuli. Acupressure stimuli mapped slightly dorsal to electroacupuncture and the latencies were similar to the evoked median nerve M20 and M30 components. The peaks of these components were delayed in acupressure compared with electroacupuncture. The MEG/EEG brain wave oscillatory frequency responses in S-1 early on included gamma (30-50 Hz) and theta (6-8 Hz). Late responses included a reduction in alpha (8-13 Hz) and beta (15-30 Hz). The acupressure stimulus evoked a stronger brain response than electroacupuncture. There were no significant differences in oscillatory frequency ranges between electroacupuncture and acupressure. There was a significant reduction in the relative power of beta 100-300 ms post-stimulus in the electroacupuncture group.

The results of this study are unique and inform important spatiotemporal mechanisms underlying acupuncture and acupressure stimuli in S-1. Although electroacupuncture and acupressure stimuli recruit afferent nerves (Aβ fibers), the acupressure stimulus was likely blunted and distributed over a wider area than electroacupuncture. The greater amplitude of cortical response by acupressure stimuli may have been reflective of the activation of more superficial fibers compared to electroacupuncture. The time frequency analysis for both stimuli types identified early onset gamma frequency activity. Although still under intense scientific investigation, this frequency band is thought to provide binding of attributes in a sensory stimulus. Gamma band activity is also known to occur during tactile and proprioceptive stimuli. Over the period of stimulation with electroacupuncture and acupressure, MEG activity attenuated consistent with habituation or conditioning response of the stimulus. This effect may be a mechanism underlying the beneficial effects of acupuncture in disorders where maladaptive neuroplasticity maintains the state of chronic pain.
Photocopies of articles cited in InTouch may be ordered for $8.00/each for alumni or $10.00/each for non-alumni. Orders will be accepted by U.S. Mail, Fax (636-207-2448), telephone (636-227-2100 / 800-782-3344), or email at circdesk@logan.edu. We require a check or credit card information prior to providing off-campus / research services. Visa, Mastercard, Discover or American Express only. Prices are subject to change.

A listing of Library services and charges is available upon request.

Logan College of Chiropractic Library is registered with the Copyright Clearance Center.

PHOTOCOPY WARNING

NOTICE: WARNING CONCERNING COPYRIGHT RESTRICTIONS

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use,” that user may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

37 C.F.R. § 201.14
Articles ordered from the InTouch newsletter are $8.00/each for alumni or $10.00/each for non-alumni.

FOR THE FASTEST SERVICE:
Call in your orders at (800)782-3344 x1781

You may also order by:

FAX (636) 207-2448
MAIL Logan College Library
PO Box 1065
Chesterfield, MO 63006-1065

EMAIL circdesk@logan.edu

Name: ____________________________
Address: ____________________________
City/State/Zip: ____________________________
Phone Number: (____) _____
Email: ____________________________

Send Articles By (check one): ☐ Mail ☐ Email ☐ Fax

Please bill my VISA/MASTERCARD/AMERICAN EXPRESS/DISCOVER (Circle One)

Account Number: ____________________________
Expiration Date: ____________________________
Signature: ____________________________

Volume 19, Number 3 September 2011

Circle the article numbers you wish to order:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

CREDIT CARD (VISA/MASTERCARD/AMERICAN EXPRESS/DISCOVER)
OR CASH ADVANCE REQUIRED. *Prices subject to change